Hot Deformation Behavior and Dynamic Recrystallization Modeling and Simulation of GH6159 Superalloy

ZENG Xiang, LIAO Runze, XU Xuefeng, TU Qiqi, CHEN Xiaoxiao, LUO Jie, FAN Xu, HUANG Leheng, LIU Jie

Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (7) : 193-205.

PDF(4495 KB)
PDF(4495 KB)
Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (7) : 193-205. DOI: 10.3969/j.issn.1674-6457.2025.07.021
Superalloy Forming

Hot Deformation Behavior and Dynamic Recrystallization Modeling and Simulation of GH6159 Superalloy

  • ZENG Xiang1a,1b,*, LIAO Runze1a, XU Xuefeng1a, TU Qiqi2, CHEN Xiaoxiao2, LUO Jie2, FAN Xu2, HUANG Leheng1a, LIU Jie1a
Author information +
History +

Abstract

The work aims to obtain the deformation behavior and microstructure evolution laws of GH6159 superalloy through hot compression experiments and microstructure analysis, to provide theoretical support for optimizing the hot working process. Thus, a study on microstructure evolution laws of GH6159 was carried out. Thermal compression experiments were carried out on GH6159 superalloy with a Thermecmastor-Z thermal simulation tester to obtain the stress-strain curves of the alloy at 0.1-10 s-1 and 900-1 100 ℃. True stress-true strain curves were modified using frictional and deformation-thermal corrections formulae, and modified Arrhenius model and dynamic recrystallization (DRX) model were established. Meanwhile, the microstructure characteristics of specimens at different temperature and strain rates were analyzed by Electron Backscatter Diffraction (EBSD). Then, a finite element compression model of GH6159 superalloy was established. DRX behavior of GH6159 superalloy in the hot working process was predicted with the established DRX model. GH6159 superalloy exhibited an obvious flow softening phenomenon and a large amount of DRX appeared during hot deformation. Via simulation prediction and experimental comparison, DRX volume fractions were 81.3%, 83.7%, 78.5%, and 82.7% at 900 ℃-0.01 s-1, 1 100 ℃- 0.01 s-1, 900 ℃-10 s-1, and 1 100 ℃-10 s-1, respectively, which agreed well with the results of EBSD. The DRX volume fraction is sensitive to deformation temperature and strain rates. High strain rates and low temperature show low dynamic recrystallization volume fraction and poor microstructure homogeneity, while the dynamic recrystallization volume fraction is high and microstructure homogeneity is good at low strain rates and high temperature. The established dynamic recrystallization model has a high accuracy by comparison of experiment and finite element simulation.

Key words

GH6159 superalloy / hot deformation / microstructure evolution / dynamic recrystallization / finite element simulation

Cite this article

Download Citations
ZENG Xiang, LIAO Runze, XU Xuefeng, TU Qiqi, CHEN Xiaoxiao, LUO Jie, FAN Xu, HUANG Leheng, LIU Jie. Hot Deformation Behavior and Dynamic Recrystallization Modeling and Simulation of GH6159 Superalloy[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 193-205 https://doi.org/10.3969/j.issn.1674-6457.2025.07.021

References

[1] GU J, GUO L, GAN B, et al.Microstructure and Mechanical Properties of an MP159 Alloy Processed by Torsional Deformation and Subsequent Annealing[J]. Materials Science and Engineering: A, 2021, 802: 140676.
[2] SLANEY J S, NEBIOLO R A.Development of Multiphase Alloy MP159 Using Experimental Statistics[J]. Metallography, 1983, 16(2): 137-160.
[3] LU S Q, SHANG B Z, LUO Z J, et al.Investigation on the Cold Deformation Strengthening Mechanism in MP159 Alloy[J]. Metallurgical and Materials Transactions A, 2000, 31(1): 5-13.
[4] 靳永波. GH4169合金多向锻造组织演变仿真及神经网络预测研究[D]. 秦皇岛: 燕山大学, 2022: 33-50.
JIN Y B.Simulation and Neural Network Prediction of Microstructure Evolution in Multi-directional Forging of GH4169 Alloy[D]. Qinhuangdao: Yanshan University, 2022: 33-50.
[5] 王泗瑞. GH4169高温合金多向锻造工艺微观组织演变模拟研究[D]. 秦皇岛: 燕山大学, 2019: 26-39.
WANG S R.Simulation Study on Microstructure Evolution of GH4169 Superalloy in Multi-directional Forging Process[D]. Qinhuangdao: Yanshan University, 2019: 26-39.
[6] 崔晨光. 热变形高精度组织演变模型及锻造成形组织预报研究[D]. 秦皇岛: 燕山大学, 2022: 32-72.
CUI C G.Study on High-precision Microstructure Evolution Model of Hot Deformation and Microstructure Prediction of Forging Forming[D]. Qinhuangdao: Yanshan University, 2022: 32-72.
[7] 冯阳. GH4742涡轮盘成形过程晶粒组织演变模拟及工艺优化[D]. 秦皇岛: 燕山大学, 2023: 16-38.
FENG Y.Simulation of Grain Structure Evolution and Process Optimization in Forming Process of GH4742 Turbine Disk[D]. Qinhuangdao: Yanshan University, 2023: 16-38.
[8] 陈林俊. GH4698镍基高温合金热变形过程组织模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 38-59.
CHEN L J.Study on Microstructure Simulation of GH4698 Nickel-based Superalloy during Hot Deformation[D]. Harbin: Harbin Institute of Technology, 2018: 38-59.
[9] 杜延鑫. HC276高温合金热加工元胞自动机模拟及工艺优化[D]. 大连: 大连理工大学, 2022: 55-61.
DU Y X.Cellular Automata Simulation and Process Optimization for Hot Working of HC276 Superalloy[D]. Dalian: Dalian University of Technology, 2022: 55-61.
[10] LEE G A, CHOI S G, YOON D J, et al. Forming Technology for Cold Forging Processes of Ball Stud Using Non-Heat-Treated Cold Forging Materials[J]. Materials Science Forum, 2005, 475/476/477/478/479: 3247-3250.
[11] SONG G, JI H C, PEI W C, et al.Prediction of Microstructure Evolution during Multidirectional Forging of the Railway Wagon Bogie Adpter[J]. Materials Today Communications, 2022, 32: 104143.
[12] KE B, YE L Y, TANG J G, et al.Hot Deformation Behavior and 3D Processing Maps of AA7020 Aluminum Alloy[J]. Journal of Alloys and Compounds, 2020, 845: 156113.
[13] CHIBA A, LEE S H, MATSUMOTO H, et al.Construction of Processing Map for Biomedical Co-28Cr-6Mo- 0.16N Alloy by Studying Its Hot Deformation Behavior Using Compression Tests[J]. Materials Science and Engineering: A, 2009, 513: 286-293.
[14] LI Y P, MATSUMOTO H, CHIBA A.Correcting the Stress-Strain Curve in the Stroke-Rate Controlling Forging Process[J]. Metallurgical and Materials Transactions A, 2009, 40(5): 1203-1209.
[15] GOETZ R L, SEMIATIN S L.The Adiabatic Correction Factor for Deformation Heating during the Uniaxial Compression Test[J]. Journal of Materials Engineering and Performance, 2001, 10(6): 710-717.
[16] SLOOFF F A, ZHOU J, DUSZCZYK J, et al.Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4- Zn1[J]. Scripta Materialia, 2007, 57(8): 759-762.
[17] 朱琳, 徐勇, 胡生双, 等. 基于摩擦修正的TC6钛合金低应变速率大变形本构模型建立[J]. 稀有金属材料与工程, 2023, 52(5): 1819-1825.
ZHU L, XU Y, HU S S, et al.Establishment of an Intrinsic Model of TC6 Titanium Alloy with Low Strain Rate and Large Deformation Based on Friction Modification[J]. Rare Metal Materials and Engineering, 2023, 52(5): 1819-1825.
[18] LI B, DU Y, CHU Z J, et al.Research on Dynamic Recrystallization Behavior of NiFeCr Based Alloy[J]. Materials Characterization, 2020, 169: 110653.
[19] 肖振朋, 李韶林, 贾淑果, 等. 基于摩擦-温度双修正的Al2O3/Cu烧结坯热变形行为[J]. 特种铸造及有色合金, 2024, 44(5): 656-662.
XIAO Z P, LI S L, JIA S G, et al.Thermal Deformation Behavior of Al2O3/Cu Sintered Billets Based on Friction-temperature Double Correction[J]. Special Casting and Nonferrous Alloys, 2024, 44(5): 656-662.
[20] LIU W, LIU Z L, ZHANG H, et al.Hot Deformation Behavior and New Grain Size Model of Hot Extruded FGH4096 Superalloy during Hot Compression[J]. Journal of Alloys and Compounds, 2023, 938: 168574.
[21] LIN X J, HUANG H J, YUAN X G, et al.Study on High-Temperature Deformation Mechanical Behavior and Dynamic Recrystallization Kinetics Model of Ti-47.5Al-2.5V-1.0Cr-0.2Zr Alloy[J]. Journal of Alloys and Compounds, 2022, 891: 162105.
[22] 曹祖涵, 应扬, 郭荻子, 等. 感应加热TA18钛合金热压缩本构方程及热加工图[J]. 钛工业进展, 2024, 41(4): 1-8.
CAO Z H, YING Y, GUO D Z, et al.Constitutive Equation and Thermal Processing Map of TA18 Titanium Alloy under Induction Heating for Hot Compression[J]. Titanium Industry Progress, 2024, 41(4): 1-8.
[23] BIESUZ M, SAUNDERS T, KE D Y, et al.A Review of Electromagnetic Processing of Materials (EPM): Heating, Sintering, Joining and Forming[J]. Journal of Materials Science & Technology, 2021, 69: 239-272.
[24] 马英中. 吻合钉用高强韧可控降解Mg-Zn-Ca-X的合金化规律与组织性能研究[D]. 北京: 北京科技大学, 2022: 62-15.
MA Y Z.Study on Alloying Law and Microstructure and Properties of Mg-Zn-Ca-X with High Toughness and Controllable Degradation for Anastomosis Nail[D]. Beijing: University of Science and Technology Beijing, 2022: 62-15.
[25] 吴瑞恒, 朱洪涛, 张鸿冰, 等. 0.95C-18W-4Cr-1V高速钢动态再结晶的数学模型[J]. 上海交通大学学报, 2001, 35(3): 339-342.
WU R H, ZHU H T, ZHANG H B, et al.Mathematical Model for Dynamic Recrystallization of 0.95C-18W- 4Cr-1V High-Speed Steel[J]. Journal of Shanghai Jiao Tong University, 2001, 35(3): 339-342.
[26] 刘凯, 庞坤, 宋建民, 等. 42CrMoA钢热变形过程动态再结晶行为[J]. 精密成形工程, 2023, 15(11): 147-155.
LIU K, PANG K, SONG J M, et al.Dynamic Recrystallization Behavior of 42CrMoA Steel during Heat Deformation[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 147-155.
[27] ZENG X, HUANG L H, LIU W C, et al.Hot Deformation Behavior and Dynamic Recrystallization Mechanism of GH2132 Superalloy[J]. Journal of Alloys and Compounds, 2024, 1009: 176798.

Funding

; Fund:Double Thousand Plan of Jiang Xi Province (001027232090); National Natural Science Foundation of China (52305372, 52365050); Jiangxi Provincial Natural Science Foundation (20242BAB20201); PhD Starting Foundation of Nanchang Hangkong University (2030009401093)
PDF(4495 KB)

Accesses

Citation

Detail

Sections
Recommended

/