Microstructure and Properties of Laser Tailor Welded Joints of QP1180/DP1180 Steel Plates with Different Thicknesses

LI Wenjuan, WANG Jinfeng, SU Wenchao, CHE Yajun, WANG Jing, GUO Yi, WANG Hailin, ZHANG Yuanhao

Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (7) : 69-78.

PDF(16271 KB)
PDF(16271 KB)
Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (7) : 69-78. DOI: 10.3969/j.issn.1674-6457.2025.07.008
Iron and Steel Forming

Microstructure and Properties of Laser Tailor Welded Joints of QP1180/DP1180 Steel Plates with Different Thicknesses

  • LI Wenjuan1, WANG Jinfeng1,2,*, SU Wenchao1, CHE Yajun3, WANG Jing4, GUO Yi1, WANG Hailin1, ZHANG Yuanhao1
Author information +
History +

Abstract

In order to solve the welding problems of heat affected zone softening of high strength steel QP1180 and DP1180 in automobile lightweight application, the work aims to study the microstructure and properties of laser tailor welded joints of heterogeneous QP1180/DP1180 steel plates with different thicknesses. 1.6 mm thick QP1180 steel and 1.2 mm thick DP1180 steel were welded by laser. The effects of heat input on the microstructure and mechanical properties of welded joints were studied by scanning electron microscopy, hydraulic tensile testing machine and Vickers hardness tester. Under different welding process parameters, the laser welded joints were in full penetration state, and the weld surface was well. With the increase of heat input, the transition from the weld metal zone to the base metal zone gradually became gentle, the depression became smaller, and the width of the weld face and back of weld increased. The lath martensite beam in the weld metal zone became longer with the increase of heat input, and the beam spacing became wider, and the width distribution was not uniform. The effects of heat input on the change of grain size in the heat affected zone of QP1180 side and DP1180 side were basically the same. The higher the heat input, the coarser the grain size of the coarse-grain zone and the fine-grain zone, and the more the ferrite content in the inter-critical heat affected zone. There were more carbide particles precipitated in the sub-critical heat affected zone on the QP1180 side, but the effect on the microstructure of the sub-critical heat affected zone on the DP1180 side was not obvious. There were obvious softening zones on both sides of the welded joint, and the softening of DP1180 side was more significant. Under the welding heat input conditions used in this study, the fracture of the samples in the uniaxial tensile test was located in the base metal area. Through fractography, the samples under all process parameters had ductile fracture. In the welding process window that can form full penetration bead, the welded joints with tensile strength of more than 95% of the base metal strength and the elongation of more than 30% of the base metal are obtained.

Key words

QP1180 steel / DP1180 steel / laser welding / microstructure / mechanical properties

Cite this article

Download Citations
LI Wenjuan, WANG Jinfeng, SU Wenchao, CHE Yajun, WANG Jing, GUO Yi, WANG Hailin, ZHANG Yuanhao. Microstructure and Properties of Laser Tailor Welded Joints of QP1180/DP1180 Steel Plates with Different Thicknesses[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 69-78 https://doi.org/10.3969/j.issn.1674-6457.2025.07.008

References

[1] 胡璐. 2023年我国新能源专用汽车行业发展现状及趋势分析[J]. 专用汽车, 2024(3): 22-24.
HU L. Development Status and Trend Analysis of China’s New Energy Special Purpose Vehicle Industry in2023[J]. Special Purpose Vehicle, 2024(3): 22-24.
[2] WANG Y, SHU L S, GENG S N, et al.Current Status and Development Trend of Automotive Body Laser Welding Technology[J]. Chinese Journal of Lasers, 2022, 49(12): 1202004-1202004.
[3] 李金许, 王伟. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
LI J X, WANG W.Progress of Hydrogen Embrittlement in Advanced High Strength Steels for Automotive Applications[J]. Journal of Metals, 2020, 56(4): 444-458.
[4] 王良, 王查理, 周培山, 等. 先进高强钢激光焊技术研究进展[J]. 焊接技术, 2021, 50(4): 1-4.
WANG L, WANG C L, ZHOU P S, et al.Research Progress of Laser Welding Technology for Advanced High Strength Steel[J]. Welding Technology, 2021, 50(4): 1-4.
[5] 杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势[J]. 材料导报, 2021, 35(15): 15189-15196.
DU J L, FENG Y L, ZHANG Y L.Research Status and Development Trend of New Automotive Q&P Steel[J]. Materials Reports, 2021, 35(15): 15189-15196.
[6] 李学军, 黄坚, 潘华, 等. QP1180高强钢薄板激光焊接接头的组织与成形性能[J]. 中国激光, 2019, 46(3): 72-79.
LI X J, HUANG J, PAN H, et al.Microstructure and Formability of Laser Welding Joint of QP1180 High-Strength Steel Sheet[J]. Chinese Journal of Lasers, 2019, 46(3): 72-79.
[7] 韦春华, 张立研, 王承辉. DP980高强双相钢激光焊接头力学性能研究[J]. 热加工工艺, 2022, 51(23): 33-36.
WEI C H, ZHANG L Y, WANG C H.Study on Mechanical Properties of Laser Welded Joints of DP980 High Strength Dual Phase Steel[J]. Hot Working Technology, 2022, 51(23): 33-36.
[8] 郭建超, 王承辉, 罗曼, 等. 双相钢激光焊焊接接头非均匀变形及损伤研究[J]. 热加工工艺, 2019, 48(13): 131-134.
GUO J C, WANG C H, LUO M, et al.Study on Non-Uniform Deformation and Damage of Laser Welded Joints for Dual-Phase Steel[J]. Hot Working Technology, 2019, 48(13): 131-134.
[9] KUMAR S, SINGH S B.Microstructure-Property Relationship in the Quenching and Partitioning (Q&P) Steel[J]. Materials Characterization, 2023, 196: 112561.
[10] KICKINGER C, SUPPAN C, HEBESBERGER T, et al.Microstructure and Mechanical Properties of Partially Ferritic Q&P Steels[J]. Materials Science and Engineering: A, 2021, 815: 141296.
[11] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(S1): 447-453.
TIAN F, LIN H T, JIANG H T.Microstructure and Mechanical Properties of QP980 Laser Welded Joint of High Strength Steel[J]. Materials Reports, 2021, 35(S1): 447-453.
[12] 杨景卫, 陈嘉乐, 李涛, 等. QP980高强钢小光斑激光焊接接头组织与性能研究[J]. 应用激光, 2023, 43(5): 37-42.
YANG J W, CHEN J L, LI T, et al.Study on Microstructure and Properties of QP980 High Strength Steel Joint Welded by Small Laser Spot Welding[J]. Applied Laser, 2023, 43(5): 37-42.
[13] 张骥超, 连昌伟, 韩非. 第三代超高强钢QP1180硬化与失效行为研究[J]. 机械工程学报, 2022, 58(8): 117-125.
ZHANG J C, LIAN C W, HAN F.Study on Hardening and Failure Behavior of the 3rd Generation Ultra-High Strength Steel QP1180[J]. Journal of Mechanical Engineering, 2022, 58(8): 117-125.
[14] 魏星, 钟勇, 彭周, 等. QP980和QP1180的塑性变形及断裂行为[J]. 塑性工程学报, 2021, 28(12): 103-114.
WEI X, ZHONG Y, PENG Z, et al.Plastic Deformation and Fracture Behavior of QP980 and QP1180[J]. Journal of Plasticity Engineering, 2021, 28(12): 103-114.
[15] CHENG J H, LIN B K, POTTORE N S, et al.A Mesoscale Crystal Plasticity Model to Predict Room- Temperature Deformation and Martensitic Transformation of High-Strength Quenching and Partitioning (Q&P) Steels and Validation with Synchrotron X-Ray Diffraction[J]. International Journal of Plasticity, 2024, 172: 103833.
[16] WU Z, WAN J Q, ZHANG Y, et al.The Influence of Welding Speed on Nanosecond Laser Welding of AZ31B Magnesium Alloy and 304 Stainless Steel[J]. Optics & Laser Technology, 2024, 168: 109997.
[17] WANG J F, YUAN Y, LI C, et al.Influence of Hot Forming on Microstructure and Mechanical Properties of Laser Tailor-Welded Dissimilar Ultra-High-Strength Steels[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1450-1459.
[18] 王金凤, 房宇, 李兵, 等. DP980与22MnB5激光拼焊接头性能[J]. 激光与光电子学进展, 2018, 55(2): 329-334.
WANG J F, FANG Y, LI B, et al.Properties of DP980 and 22MnB5 Laser Welded Joints[J]. Advances in Laser and Optoelectronics, 2018, 55(2): 329-334.
[19] OZTURK YILMAZ I, BILICI A Y, AYDIN H.Microstructure and Mechanical Properties of Dissimilar Resistance Spot Welded DP1000-QP1180 Steel Sheets[J]. Journal of Central South University, 2019, 26(1): 25-42.
[20] 尚庆慧, 郭学鹏, 王国栋, 等. 超高强双相钢DP1180激光拼焊接头组织及性能研究[J]. 热加工工艺, 2019, 48(7): 66-68.
SHANG Q H, GUO X P, WANG G D, et al.Microstructure and Properties of Welded Joints of Ultra-High Strength Dual-Phase Steel DP1180 by Laser Tailor Welding[J]. Hot Working Technology, 2019, 48(7): 66-68.
[21] 尚庆慧, 舒滢, 王国栋, 等. 不等厚DP1180/DP590双相钢激光拼焊接头的显微组织与力学性能[J]. 机械工程材料, 2019, 43(3): 44-49.
SHANG Q H, SHU Y, WANG G D, et al.Microstructure and Mechanical Properties of Laser Tailor-Welded Joint of Dissimilar Thickness DP1180/DP590 Dual-Phase Steels[J]. Materials for Mechanical Engineering, 2019, 43(3): 44-49.
[22] 袁耀, 王金凤, 蔡笑宇, 等. Q960E超高强钢焊接接头组织和性能研究[J]. 精密成形工程, 2023, 15(5): 97-104.
YUAN Y, WANG J F, CAI X Y, et al.Microstructure and Properties of Welded Joints of Q960E Ultra-High Strength Steel[J]. Journal of Netshape Forming Engineering, 2023, 15(5): 97-104.
[23] 苏文超, 王金凤, 车亚军, 等. 热成形淬火对QP1180/ 22MnB5激光拼焊板组织与性能的影响[J]. 精密成形工程, 2024, 16(1): 112-120.
SU W C, WANG J F, CHE Y J, et al.Effect of Hot Forming Quenching on Microstructure and Properties of QP1180/22MnB5 Laser Tailor-Welded Blanks[J]. Journal of Netshape Forming Engineering, 2024, 16(1): 112-120.
[24] 李敏, 荣佑民, 王璐, 等. 超高强钢1700MS激光焊接头微观组织与力学性能[J]. 激光与光电子学进展, 2023, 60(17): 259-265.
LI M, RONG Y M, WANG L, et al.Study on Microstructure and Mechanical Properties of Laser Welded Joints for Ultra-High Strength Steel 1700MS[J]. Laser & Optoelectronics Progress, 2023, 60(17): 259-265.
[25] 林文虎, 吴岳, 李芳, 等. 振镜扫描激光焊接QP1180高强钢的组织和性能研究[J]. 中国激光, 2022, 49(22): 176-184.
LIN W H, WU Y, LI F, et al.Microstructure and Mechanical Properties of QP1180 High-Strength Steel Welded Joints Using Oscillation Scanning[J]. Chinese Journal of Lasers, 2022, 49(22): 176-184.
[26] 朱天才, 王晓南, 陈文刚, 等. 热输入对QP1180钢激光焊接接头组织性能的影响[J]. 激光与光电子学进展, 2020, 57(5): 194-201.
ZHU T C, WANG X N, CHEN W G, et al.Effect of Heat Inputs on Microstructure and Properties of QP1180 Steel Laser Welded Joints[J]. Laser & Optoelectronics Progress, 2020, 57(5): 194-201.
[27] 王金凤. DP1000双相钢激光焊接HAZ软化及接头性能研究[D]. 天津: 天津大学, 2016.
WANG J F.Study on HAZ Softening and Joint Properties of DP1000 Dual-phase Steel by Laser Welding[D]. Tianjin: Tianjin University, 2016.

Funding

; Fund:Open Project Fund of State Key Laboratory of Advanced Welding and Connection (AWJ-23M25); The Central Government Guides Local Special Funds for Science and Technology (2019ZYYD023)
PDF(16271 KB)

Accesses

Citation

Detail

Sections
Recommended

/