Mechanical Properties and Fracture Mechanism of PHS1800 Hot Formed Steel Resistance Spot Welding Joint

CHEN Jialong, LIU Yan, LI Bo, YE Haiqing

Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 197-205.

PDF(11986 KB)
PDF(11986 KB)
Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 197-205. DOI: 10.3969/j.issn.1674-6457.2025.06.021
Iron and Steel Forming

Mechanical Properties and Fracture Mechanism of PHS1800 Hot Formed Steel Resistance Spot Welding Joint

  • CHEN Jialonga, LIU Yanb*, LI Boa, YE Haiqinga
Author information +
History +

Abstract

The work aims to study the influence of resistance spot welding process parameters on the mechanical properties of welded joints of PHS1800 hot stamping steel and analyze its fracture mechanism. The mechanical properties of resistance spot welded joints of PHS1800 hot forming steel were tested by means of scanning electron microscopy, tensile testing machine and microhardness tester. The fracture mechanism of the joint was systematically analyzed by observing the microstructure of the joint, measuring the tensile strength and microhardness distribution. The influence of welding process parameters on the tensile properties of welded joints was clarified. The results showed that under the parameters of welding current of 11.5 kA, welding time of 0.6 s and electrode pressure of 2.0 kN, the welded joint had the optimal tensile property. Welding time and welding current have a significant influence on the tensile property of the welded joints, while the influence of electrode pressure is relatively small. The fracture mechanism of the welded joints can be divided into pull-out fracture and interface fracture, both of which are brittle fracture. This is mainly because there is martensite in both the base metal and the welded joint. In terms of tensile property, the tensile shear capacity of the joints is better when pull-out fracture occurs. The order of average hardness in each area of the welded joints is the base metal zone (727.47HV0.2)、the nugget zone (687.69HV0.2)、the heat affected zone (632.23HV0.2). This is due to the different content of martensite structure in each area after welding, as well as the formation of tempered martensite and ferrite structures after welding, resulting in lower microhardness in the heat affected zone and nugget zone than in the base metal zone.

Key words

PHS1800 hot-formed steel / resistance spot welding / tensile properties / microhardness / fracture mechanism

Cite this article

Download Citations
CHEN Jialong, LIU Yan, LI Bo, YE Haiqing. Mechanical Properties and Fracture Mechanism of PHS1800 Hot Formed Steel Resistance Spot Welding Joint[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 197-205 https://doi.org/10.3969/j.issn.1674-6457.2025.06.021

References

[1] 王鹏博, 张永强, 付参, 等. HR800CP复相高强钢电阻点焊工艺性能研究[J]. 电焊机, 2021, 51(11): 67-71.
WANG P B, ZHANG Y Q, FU C, et al.Research on Resistance Spot Welding Process Performance of Complex-Phase Steel HR800CP[J]. Electric Welding Machine, 2021, 51(11): 67-71.
[2] 孙文超, 王明坤. 变形铝合金在汽车轻量化中的应用和挑战分析[J]. 世界有色金属, 2023(15): 172-174.
SUN W C, WANG M K.Application and Challenge Analysis of Wrought Aluminum Alloy in Automobile Lightweight[J]. World Nonferrous Metals, 2023(15): 172-174.
[3] VARGAS V H, MEJÍA I, BALTAZAR-HERNÁNDEZ V H, et al. Effect of Retained Austenite and Nonmetallic Inclusions on the Thermal/Electrical Properties and Resistance Spot Welding Nuggets of Si-Containing TRIP Steels[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(1): 52-63.
[4] 唐远寿, 司宇, 徐正萌, 等. 超高强度钢在汽车轻量化中的应用及研究进展[J]. 金属热处理, 2023, 48(10): 247-254.
TANG Y S, SI Y, XU Z M, et al.Application and Research Progress of Ultra-High Strength Steel in Automotive Lightweight[J]. Heat Treatment of Metals, 2023, 48(10): 247-254.
[5] OZTURK Y I, B A Y, AYDIN H. Microstructure and Mechanical Properties of Dissimilar Resistance Spot Welded DP1000-QP1180 Steel Sheets[J]. Journal of Central South University, 2019, 26(1): 25-42.
[6] OKADA T, YASUYAMA M, UCHIHARA M, et al.Effect of Paint Baking Thermal Cycle on Joint Strength of Spot Welds[J]. Welding International, 2022, 36(2): 76-86.
[7] DAI W, LI D Y, TANG D, et al.Deep Learning Assisted Vision Inspection of Resistance Spot Welds[J]. Journal of Manufacturing Processes, 2021, 62: 262-274.
[8] VIJAYAN V, MURUGAN S P, JI C, et al.Factors Affecting Shrinkage Voids in Advanced High Strength Steel (AHSS) Resistance Spot Welds[J]. Journal of Mechanical Science and Technology, 2021, 35(11): 5137-5142.
[9] 李丁, 卢广玺, 孙玉峰, 等. DH590及其镀锌钢板电阻点焊工艺和性能研究[J]. 热加工工艺, 2022, 51(13): 53-56.
LI D, LU G X, SUN Y F, et al.Study on Resistance Spot Welding Process and Properity of DH590 and Its Galvanized Steel Sheets[J]. Hot Working Technology, 2022, 51(13): 53-56.
[10] HAGHSHENAS N, MOSHAYEDI H.Monitoring of Resistance Spot Welding Process[J]. Experimental Techniques, 2020, 44(1): 99-112.
[11] 孙建, 黄贞益, 张济宇, 等. DP600和HC180Y异种钢点焊接头组织和性能研究[J]. 热加工工艺, 2021, 50(7): 27-30.
SUN J, HUANG Z Y, ZHANG J Y, et al.Study on Microstructure and Mechanical Properties of DP600 Steel and HC180Y Steel Spot Welded Joints[J]. Hot Working Technology, 2021, 50(7): 27-30.
[12] KAZEM R K, HOSSEIN F G, ALIREZA A, et al.Fatigue Life Analysis in the Residual Stress Field Due to Resistance Spot Welding Process Considering Different Sheet Thicknesses and Dissimilar Electrode Geometries[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237(1): 33-51.
[13] 王鹏博, 张永强, 付参, 等. CP780镀锌复相钢板电阻点焊焊接特性[J]. 机械工程材料, 2021, 45(5): 63-66.
WANG P B, ZHANG Y Q, FU C, et al.Resistance Spot Welding Performance of CP780 Galvanized Complex-Phase Steel Plate[J]. Materials for Mechanical Engineering, 2021, 45(5): 63-66.
[14] 武陇岗, 王瑞杰, 刘飞, 等. AZ31B/TA15异种材料电阻点焊接头的疲劳寿命预测[J]. 材料热处理学报, 2022, 43(3): 168-176.
WU L G, WANG R J, LIU F, et al.Fatigue Life Prediction of Resistance Spot Welded Joints of AZ31B/TA15 Dissimilar Materials[J]. Transactions of Materials and Heat Treatment, 2022, 43(3): 168-176.
[15] 孔谅, 刘思源, 王敏. 先进高强钢电阻点焊接头的断裂模式分析与预测[J]. 焊接学报, 2020, 41(1): 12-17.
KONG L, LIU S Y, WANG M.Failure Mode Analysis and Prediction of Resistance Spot Welding Joints of Advanced High Strength Steel[J]. Transactions of the China Welding Institution, 2020, 41(1): 12-17.
[16] 于燕, 冯桐, 杨海峰. 高强度TRIP800钢板点焊工艺研究[J]. 热加工工艺, 2014, 43(17): 175-178.
YU Y, FENG T, YANG H F.Resistance Spot Welding Performance of TRIP800 High Strength Steel Sheet[J]. Hot Working Technology, 2014, 43(17): 175-178.
[17] 崇玉良, 孔谅, 宋政, 等. 高强钢与铝合金电阻点焊性能[J]. 焊接学报, 2013, 34(9): 71-74.
CHONG Y L, KONG L, SONG Z, et al.Properties of Resistance Spot Weld between High Strength Steel and Aluminum Alloy[J]. Transactions of the China Welding Institution, 2013, 34(9): 71-74.
[18] 王斌, 黄诗铭, 史春元, 等. 不同电阻点焊方法对轨道车辆用不锈钢接头质量与性能的影响[J]. 热加工工艺, 2022, 51(3): 38-42.
WANG B, HUANG S M, SHI C Y, et al.Influence of Different Resistance Spot Welding Methods on Quality and Performance of Stainless Steel Joints for Railway Vehicles[J]. Hot Working Technology, 2022, 51(3): 38-42.
[19] JIANG J, QI L C, ZHANG M J, et al.Microstructure and Mechanical Properties of Ti-4Al-1.5Mn Resistance Spot Welding Joints[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(5): 893-900.
[20] 梁文, 冯彬, 朱国明, 等. 1 800 MPa热成形钢与CR340LA低合金高强钢激光焊接性能[J]. 工程科学学报, 2020, 42(6): 755-762.
LIANG W, FENG B, ZHU G M, et al.Laser Welding Properties of 1 800 MPa Press Hardening Steel and Low-Alloy Highs-Trength Steel CR340LA[J]. Chinese Journal of Engineering, 2020, 42(6): 755-762.
[21] 王轲, 姚再起, 刘永锋, 等. 2 GPa热成形钢电阻点焊接头的显微组织与力学性能[J]. 材料科学与工程学报, 2023, 41(3): 354-358.
WANG K, YAO Z Q, LIU Y F, et al.Microstructure and Mechanical Properties of 2 GPa Hot-Formed Steel Resistance Spot Welded Joints[J]. Journal of Materials Science and Engineering, 2023, 41(3): 354-358.
[22] 王鹏程, 赵棪, 路洪洲, 等. 超高强度热成形钢研究进展及展望[J]. 中国冶金, 2023, 33(11): 12-28.
WANG P C, ZHAO Y, LU H Z, et al.Research Progress and Prospect of Ultra-High Strength Hot-Formed Steel[J]. China Metallurgy, 2023, 33(11): 12-28.
[23] 马光宗, 马德刚, 李建英, 等. 奥氏体化温度对含铌热成形钢组织性能的影响[J]. 金属热处理, 2023, 48(12): 100-104.
MA G Z, MA D G, LI J Y, et al.Effect of Austenitizing Temperature on Microstructure and Properties of Niobium Containing Hot-Formed Steel[J]. Heat Treatment of Metals, 2023, 48(12): 100-104.
[24] 陈华, 丁灿灿, 胡斌, 等. 铌微合金化和淬火速率对热成形钢组织与力学性能的影响[J]. 材料工程, 2024, 52(2): 146-154.
CHEN H, DING C C, HU B, et al.Effects of Nb Microalloying and Quenching Rate on Microstructure and Mechanical Properties of Hot Formed Steels[J]. Journal of Materials Engineering, 2024, 52(2): 146-154.
[25] 张婧珂, 刘岩, 杜安娜, 等. 焊接速度及芯环比对热成形钢双光斑激光焊接接头组织与性能的影响[J]. 精密成形工程, 2024, 16(8): 155-164.
ZHANG J K, LIU Y, DU A N, et al.Effect of Welding Speed and Core Ring Ratio on the Microstructure and Properties of Double Spot Laser Welded Joints of Hot-Formed Steel[J]. Journal of Netshape Forming Engineering, 2024, 16(8): 155-164.
[26] 刘爽, 陈慧琴, 曹苗, 等. 1 800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023, 44(6): 133-138.
LIU S, CHEN H Q, CAO M, et al.Study on Microstructure Evolution and Austenitizing Process of 1 800 MPa Grade Ultra-High Strength Hot Stamping Steels[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 133-138.
[27] 刘爽, 唐广波, 李激光, 等. 1 800 MPa级低合金超高强度工程机械用钢显微组织与力学性能[J]. 钢铁, 2014, 49(1): 79-84.
LIU S, TANG G B, LI J G, et al.Microstructure and Mechanical Property of 1 800 MPa Grade Low Alloyed Ultra-High Strength Steel for Engineering Machinery[J]. Iron and Steel, 2014, 49(1): 79-84.
[28] 杨海根, 赵征志, 杨源华, 等. 1 800 MPa级冷轧热成形钢的组织与性能[J]. 材料热处理学报, 2017, 38(7): 120-125.
YANG H G, ZHAO Z Z, YANG Y H, et al.Microstructure and Properties of 1 800 MPa-Grade Cold-Rolled Hot Stamping Steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(7): 120-125.
[29] 晋家春, 邓宗吉, 杨峥, 等. 加热工艺对1 800 MPa级热成形钢冷弯性能的影响[J]. 金属热处理, 2021, 46(4): 126-130.
JIN J C, DENG Z J, YANG Z, et al.Effect of Heating Process on Cold Bending Ability of 1 800 MPa Grade Hot Stamped Steel[J]. Heat Treatment of Metals, 2021, 46(4): 126-130.
[30] 刘岩, 刘晓昂, 叶海青, 等. PHS1800热成形钢电阻点焊接头截面特性及工艺优化[J]. 精密成形工程, 2023, 15(9): 83-89.
LIU Y, LIU X A, YE H Q, et al.Section Characteristics and Process Optimization of Resistance Spot Welding Joint for PHS1800 Press Hardening Steel[J]. Journal of Netshape Forming Engineering, 2023, 15(9): 83-89.
[31] 王立刚. PHS2000汽车钢电阻点焊焊接工艺研究[J]. 冶金信息导刊, 2023, 60(3): 22-25.
WANG L G.Research on PHS2000 Automotive Steel Resistance Spot Welding Process[J]. Metallurgical Information Review, 2023, 60(3): 22-25.

Funding

Natural Science Foundation of Liaoning Province (2023-MS-320)
PDF(11986 KB)

Accesses

Citation

Detail

Sections
Recommended

/