Effect of Heat Treatment on Microstructure and Properties of Laser-CMT Composite Additively Formed Parts of 205B Aluminium Alloy

NIU Chenxu, ZHANG Jia, LYU Meng, GUO Haiwei, YANG Fenghao

Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 187-196.

PDF(6152 KB)
PDF(6152 KB)
Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 187-196. DOI: 10.3969/j.issn.1674-6457.2025.06.020
Light Alloy Forming

Effect of Heat Treatment on Microstructure and Properties of Laser-CMT Composite Additively Formed Parts of 205B Aluminium Alloy

  • NIU Chenxu1, ZHANG Jia1, LYU Meng1,2, GUO Haiwei1,2*, YANG Fenghao3
Author information +
History +

Abstract

The work aims to conduct heat treatment on additively formed parts of 205B aluminium alloy of poor tissue uniformity, low strength and large anisotropy of mechanical properties, so as to improve the properties of the alloy. Solid solution quenching+aging heat treatment method was adopted and the macro-microstructure morphology, second phase distribution, micro-hardness and tensile strength of laser-arc (CMT) composite additive 205B aluminum alloy under different treatment processes were characterized. With the increase of solid solution time, the α+θ eutectic organization at the grain boundary gradually disappeared, and the Cu element was solidly dissolved into the Al matrix; When the solid solution time was 120 min, the micro-hardness, transverse tensile strength, and longitudinal tensile strength of the material were 152.48HV, 439.51 MPa, and 429.15 MPa, respectively. With the prolongation of aging time, the T-phase in the crystal continued to grow and aggregate, forming “black lumps”; The micro-hardness, transverse tensile strength and longitudinal tensile strength of the specimen showed a trend of first increasing and then decreasing with the increase in solid solution time. When the aging time is 360 min, the material obtained the best mechanical properties (hardness of 154.67HV, transverse tensile strength of 448.05 MPa, longitudinal tensile strength of 435.59 MPa). The use of solid solution quenching+aging heat treatment method can effectively improve the macro-microstructure uniformity of 205B aluminum alloy obtained by composite additive and can significantly increase its hardness and reduce the tensile strength anisotropy.

Key words

205B aluminum alloy / solid solution quenching / aging heat treatment / uniformity / anisotropy

Cite this article

Download Citations
NIU Chenxu, ZHANG Jia, LYU Meng, GUO Haiwei, YANG Fenghao. Effect of Heat Treatment on Microstructure and Properties of Laser-CMT Composite Additively Formed Parts of 205B Aluminium Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 187-196 https://doi.org/10.3969/j.issn.1674-6457.2025.06.020

References

[1] 王俊升, 薛程鹏, 王硕, 等. 轻质金属的发展和应用: 高强铝合金和镁合金[J]. 特种铸造及有色合金, 2023, 43(2): 145-152.
WANG J S, XUE C P, WANG S, et al.Development and Applications of LightweightMetal: High-Strength Al and MgAlloys[J]. Special Casting & Nonferrous Alloys, 2023, 43(2): 145-152.
[2] SILCOCK J M, FLOWER H M.Comments on a Comparison of Early and Recent Work on the Effect of Trace Additions of Cd, In, or Sn on Nucleation and Growth of θ′ in Al-Cu Alloys[J]. Scripta Materialia, 2002, 46(5): 389-394.
[3] KHORASANI M, GHASEMI A, ROLFE B, et al.Additive Manufacturing a Powerful Tool for the Aerospace Industry[J]. Rapid Prototyping Journal, 2022, 28(1): 87-100.
[4] 邓佳明, 朱茜, 陈浩铭, 等. 增材制造复杂流道水冷电机壳体对驱动电机持续功率影响的研究[J]. 精密成形工程, 2024, 16(2): 174-181.
DENG J M, ZHU Q, CHEN H M, et al.Influence of Additive Manufacturing Complex Flow Channel Water-cooled Housing on Continuous Rating of Drive Motor[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 174-181.
[5] ZHANG G H, LU X F, LI J Q, et al.In-Situ Grain Structure Control in Directed Energy Deposition of Ti6Al4V[J]. Additive Manufacturing, 2022, 55: 102865.
[6] 张立浩, 钱波, 张朝瑞, 等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺, 2022, 30(1): 42-52.
ZHANG L H, QIAN B, ZHANG C R, et al.Summary of Development Trend of Metal Additive Manufacturing Technology[J]. Materials Science and Technology, 2022, 30(1): 42-52.
[7] KENEVISI M S, YU Y F, LIN F.A Review on Additive Manufacturing of Al-Cu (2xxx) Aluminium Alloys, Processes and Defects[J]. Materials Science and Technology, 2021, 37(9): 805-829.
[8] XU M, ZHANG H D, YUAN T, et al.Microstructural Characteristics and Cracking Mechanism of Al-Cu Alloys in Wire Arc Additive Manufacturing[J]. Materials Characterization, 2023, 197: 112677.
[9] GU J L, DING J L, WILLIAMS S W, et al.The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al-6.3Cu Alloy[J]. Materials Science and Engineering: A, 2016, 651: 18-26.
[10] CHEN Y H, XU M F, ZHANG T M, et al.Grain Refinement and Mechanical Properties Improvement of Inconel 625 Alloy Fabricated by Ultrasonic-Assisted Wire and Arc Additive Manufacturing[J]. Journal of Alloys and Compounds, 2022, 910: 164957.
[11] 武永, 邓威, 刘恺, 等. 层间超声冲击对TIG电弧增材制造2219铝合金组织和力学性能的影响[J]. 航空科学技术, 2021, 32(11): 80-86.
WU Y, DENG W, LIU K, et al.Effect of Interlayer Ultrasonic Peening on the Microstructure and Mechanical Properties of 2219 Aluminum Alloy by TIG Wire Arc Additive Manufacturing[J]. Aeronautical Science & Technology, 2021,32(11): 80-86.
[12] FU R, TANG S Y, LU J P, et al.Hot-Wire Arc Additive Manufacturing of Aluminum Alloy with Reduced Porosity and High Deposition Rate[J]. Materials & Design, 2021, 199: 109370.
[13] JIN P, LIU Y B, LI F X, et al.Realization of Synergistic Enhancement for Fracture Strength and Ductility by Adding TiC Particles in Wire and Arc Additive Manufacturing 2219 Aluminium Alloy[J]. Composites Part B: Engineering, 2021, 219: 108921.
[14] 杨光, 邹文北, 王超, 等. 激光增材连接异质铝合金的组织及性能研究[J]. 中国激光, 2022, 49(22): 2202010.
YANG G, ZOU W B, WANG C, et al.Microstructure and Properties of Laser Additive Jointing Heterogeneous Aluminum Alloys[J]. Chinese Journal of Lasers, 2022, 49(22): 2202010.
[15] 赵俊鹏, 刘长军, 刘子奇, 等. 激光-CMT复合焊接内涵、研究现状与展望[J]. 应用激光, 2022, 42(9): 1-11.
ZHAO J P, LIU C J, LIU Z Q, et al.Connotation, Research Status and Expectation of Laser-CMT HybridWelding[J]. Applied Laser, 2022, 42(9): 1-11.
[16] 张禄中, 王晓南, 陈夏明, 等. 激光功率对高强Al- Mg-Si-Cu合金激光-CMT复合焊接接头组织性能的影响[J]. 中国激光, 2023, 50(4): 135-143.
ZHANG L Z, WANG X N, CHEN X M, et al.Effect of Laser Power on Microstructure and Properties of High Strength Al-Mg-Si-Cu Alloy Laser-CMT Hybrid Welded Joints[J]. Chinese Journal of Lasers, 2023, 50(4): 135-143.
[17] GONG M C, ZHANG S, LU Y, et al.Effects of Laser Power on Texture Evolution and Mechanical Properties of Laser-Arc Hybrid Additive Manufacturing[J]. Additive Manufacturing, 2021, 46: 102201.
[18] WANG Z N, LIN X, WANG L L, et al.Novel High- Strength Al-Cu-Cd Alloy Fabricated by Arc-Directed Energy Deposition: Precipitation Behavior of the Cd Phase and Grain Evolution[J]. Additive Manufacturing, 2022, 60: 103278.
[19] ZHOU S Y, WU K, YANG G, et al.Microstructure and Mechanical Properties of Wire Arc Additively Manufactured 205A High Strength Aluminum Alloy: The Comparison of As-Deposited and T6 Heat-Treated Samples[J]. Materials Characterization, 2022, 189: 111990.
[20] 顾江龙. CMT工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究[D]. 沈阳: 东北大学, 2016.
GU J L.Study on Microstructure and Properties of Al-Cu-(Mg) Alloy Madeby Adding Materials by CMT Process[D]. Shenyang: Northeastern University, 2016.
[21] 李利华, 毛健, 卢锦德, 等. 高强度铸造铝铜合金微观组织对性能的影响[J]. 热加工工艺, 2010, 39(5): 1-3.
LI L H, MAO J, LU J D, et al.Influence of Microstructure on Mechanical Properties of High Strength Cast Aluminum-Copper Alloy[J]. Hot Working Technology, 2010,39(5): 1-3.
[22] 贤福超, 郝启堂, 李新雷, 等. ZL205A合金晶界偏析行为研究[J]. 铸造技术, 2012, 33(12): 1391-1393.
XIAN F C, HAO Q T, LI X L, et al.Study on GrainBoundarySegregationBehavior of ZL205A Alloy[J]. Foundry Technology, 2012, 33(12): 1391-1393.
[23] 张佳琪, 张国伟, 徐宏. Al-Cu合金的热处理工艺研究[J]. 铸造技术, 2016, 37(1): 27-29.
ZHANG J Q, ZHANG G W, XU H.Study on Heat Treatment Process for Al-Cu Alloys[J]. Foundry Technology, 2016, 37(1): 27-29.
[24] 李玉, 张国伟, 徐宏, 等. ZL205A合金热处理工艺研究[J]. 铸造技术, 2017, 38(1): 68-69.
LI Y, ZHANG G W, XU H, et al.Study on Heat Treatment Process for ZL205A Alloy[J]. Foundry Technology, 2017, 38(1): 68-69.
[25] BANUMATHY S, MANDAL R K, SINGH A K.Texture and Anisotropy of a Hot Rolled Ti-16Nb Alloy[J]. Journal of Alloys and Compounds, 2010, 500(2): 325-338.

Funding

Key Scientific and Technological Projects in Henan Province (232102231011, 222102230025); Key Research Projects of Higher Education Institutions by Henan Provincial Department of Education (23B430016)
PDF(6152 KB)

Accesses

Citation

Detail

Sections
Recommended

/