Brazing Process and Performance of Ti2AlNb Alloy and GH536 Nickel-based Alloy Using AgMn Filler Metal

LI Yin, ZHOU Yumeng, ZHANG Yu, GUO Wei, LONG Weimin, ZHANG Lei

Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 56-65.

PDF(10151 KB)
PDF(10151 KB)
Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 56-65. DOI: 10.3969/j.issn.1674-6457.2025.06.006
Precision Brazing

Brazing Process and Performance of Ti2AlNb Alloy and GH536 Nickel-based Alloy Using AgMn Filler Metal

  • LI Yin1, ZHOU Yumeng2, ZHANG Yu3*, GUO Wei3, LONG Weimin4, ZHANG Lei4
Author information +
History +

Abstract

The work aims to investigate the effect of silver-based filler metal AgMn on the brazing performance of Ti2AlNb alloy and GH536 nickel-based superalloy, analyze the microstructure, reaction products, and mechanical properties of brazing joints, and evaluate the impact of welding parameters on the joint performance. Brazing experiments were carried out on Ti2AlNb alloy and GH536 superalloy using AgMn filler metal, with welding temperature set between 960 ℃ and 1 020 ℃ and holding time ranging from 5 to 30 min. The microstructure and phase composition of the brazing joints were characterized by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The mechanical properties of the joints were evaluated through microhardness and shear strength tests. Experimental results showed that as welding temperature and holding time increased, the diffusion-affected zone and interface reaction layer width on the base material side increased, while the Ag layer width in the brazing seam decreased. At welding temperature of 960 ℃ and holding time of 20 minutes, the maximum shear strength at room temperature was 176.9 MPa. The fracture of the joint occurred in the interface reaction zone on the Ti2AlNb alloy side, at the β-Ti layer, which was the hardest region of the joint, and the fracture mode was brittle. The AgMn silver-based filler metal effectively achieves brazing between Ti2AlNb alloy and GH536 alloy, with the mechanical properties of the brazed joint significantly affected by welding temperature and holding time. By controlling the welding process parameters, joints with higher strength and no significant defects can be obtained.

Key words

brazing / Ti2AlNb alloy / nickel-based superalloy / microstructure / mechanical properties

Cite this article

Download Citations
LI Yin, ZHOU Yumeng, ZHANG Yu, GUO Wei, LONG Weimin, ZHANG Lei. Brazing Process and Performance of Ti2AlNb Alloy and GH536 Nickel-based Alloy Using AgMn Filler Metal[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 56-65 https://doi.org/10.3969/j.issn.1674-6457.2025.06.006

References

[1] 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
LIU D X.One Generation of New Material, One Generation of New Type Engine: Development Trend of Aero-Engine and Its Requirements for Materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5.
[2] 姜煜霞. 航空发动机高温合金材料热处理研究[J]. 中国设备工程, 2025(2): 142-144.
JIANG Y X.Study on Heat Treatment of Aeroengine Superalloy Materials[J]. China Plant Engineering, 2025 (2): 142-144.
[3] 张安琴, 王江, 张林嘉. 航空发动机先进材料发展现状和趋势研究[J]. 内燃机与配件, 2024(14): 130-136.
ZHANG A Q, WANG J, ZHANG L J.Research on Development Status and Trends of Advanced Materials for Aircraft Engines[J]. Internal Combustion Engine & Parts, 2024(14): 130-136.
[4] ZHANG Y, GUO W, MEI H, et al.The Novel High-Entropy Alloy Filler Realized the Efficient Inhibition of the Violent Reaction and Brittle Phase Formation in the SiCf/SiC Heterogeneous Brazed Joint[J]. Materials Characterization, 2025, 222: 114849.
[5] ZHANG L X, SUN Z, XUE Q, et al.Transient Liquid Phase Bonding of IC10 Single Crystal with GH3039 Superalloy Using BNi2 Interlayer: Microstructure and Mechanical Properties[J]. Materials & Design, 2016, 90: 949-957.
[6] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, 25(S2): 482-486.
WANG H Y, AN Y Q, LI C Y, et al.Research Progress of Ni-Based Superalloys[J]. Materials Reports, 2011, 25(S2): 482-486.
[7] 胡胜鹏, 李文强, 付伟, 等. BNi-2非晶钎料钎焊高铌TiAl合金与GH3536合金接头组织与性能[J]. 航空学报, 2021, 42(3): 423846.
HU S P, LI W Q, FU W, et al.Interfacial Microstructure and Mechanical Properties of High Nb Containing TiAl Alloy and GH3536 Superalloy Brazed Using Amorphous BNi-2filler[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423846.
[8] 李鹏, 张振阳, 张亮亮, 等. (TiZrHf)40(NiCu)55Al5高熵非晶钎料真空钎焊Ti2AlNb/GH4169合金[J]. 焊接学报, 2024, 45(8): 1-11.
LI P, ZHANG Z Y, ZHANG L L, et al.Vacuum Brazing Ti2AlNb/GH4169 Alloy with (TiZrHf)40(NiCu)55Al5 High-Entropy Amorphous Filler Metal[J]. Transactions of the China Welding Institution, 2024, 45(8): 1-11.
[9] 刘石双, 曹京霞, 周毅, 等. Ti2AlNb合金研究与展望[J]. 中国有色金属学报, 2021, 31(11): 3106-3126.
LIU S S, CAO J X, ZHOU Y, et al.Research and Prospect of Ti2AlNb Alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3106-3126.
[10] 张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2018.
ZHANG Q Y, ZHUANG H S.Handbook of Brazing and Soldering[M]. Beijing: China Machine Press, 2018.
[11] 金莹, 刘红亮, 魏鑫, 等. GH4738/GH3536异种高温合金钎焊接头的组织与性能[J]. 焊接, 2023(10): 18-22.
JIN Y, LIU H L, WEI X, et al.Microstructure and Mechanical Properties of Brazed Joints of GH4738/GH3536 Dissimilar Superalloys[J]. Welding & Joining, 2023(10): 18-22.
[12] ZHANG Y, GUO W, YIN C H, et al.The Interlayer Self-Reinforcement and Filler Re-Optimization Achieving Multiple Collaborative Enhancement of the Brazed Superalloy Heterogeneous Joint[J]. Materials Science and Engineering: A, 2024, 903: 146694.
[13] 付伟, 孙浩, 陈兴东, 等. 温度对SUS410/BNi-2/ Hastelloy X钎焊接头界面组织及力学性能的影响[J]. 精密成形工程, 2024, 16(10): 124-130.
FU W, SUN H, CHEN X D, et al.Effect of Brazing Temperature on Microstructure and Mechanical Property of SUS410/BNi-2/Hastelloy X Joint[J]. Journal of Netshape Forming Engineering, 2024, 16(10): 124-130.
[14] REN H S, REN X Y, LONG W M, et al.Formation Mechanism of Interfacial Microstructures and Mechanical Properties of Ti2AlNb/Ni-Based Superalloy Joints Brazed with NiCrFeSiB Filler Metal[J]. Progress in Natural Science: Materials International, 2021, 31(2): 310-318.
[15] 何鹏, 李海新, 林铁松, 等. TiAl基合金与Ni基合金钎焊连接接头界面组织及性能[J]. 稀有金属材料与工程, 2013, 42(11): 2248-2252.
HE P, LI H X, LIN T S, et al.Interfacial Microstructure and Properties of Brazing Joints of TiAl/Ni-Based Alloy[J]. Rare Metal Materials and Engineering, 2013, 42(11): 2248-2252.
[16] 任海水, 熊华平, 吴欣, 等. 钛铝系合金与镍基高温合金异种连接技术研究进展[J]. 机械工程学报, 2017, 53(4): 1-10.
REN H S, XIONG H P, WU X, et al.Research Advances on the Dissimilar Joining of Titanium Aluminides and Nickel-Based Superalloys[J]. Journal of Mechanical Engineering, 2017, 53(4): 1-10.
[17] 宁远涛, 赵怀志. Ag与周期表元素的相互作用及键参数分析[J]. 贵金属, 2002, 23(2): 38-46.
NING Y T, ZHAO H Z.Interaction and Bond Parameter Analysis for Binary Silver Alloys with Elements in the Periodic Table[J]. Precious Metals, 2002, 23(2): 38-46.
[18] ZHANG W R, LIAW P K, ZHANG Y.Science and Technology in High-Entropy Alloys[J]. Science China Materials, 2018, 61(1): 2-22.
[19] 余倩, 陈雨洁, 方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报, 2021, 57(4): 393-402.
YU Q, CHEN Y J, FANG Y.Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. Acta Metallurgica Sinica, 2021, 57(4): 393-402.
[20] 宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457.
SONG X F, ZHANG Y.Progress of High Entropy Alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 451-457.
[21] LAURENT-BROCQ M, AKHATOVA A, PERRIÈRE L, et al. Insights into the Phase Diagram of the CrMnFeCoNi High Entropy Alloy[J]. Acta Materialia, 2015, 88: 355-365.
[22] 张成聪, 余丽玲, 王玉华, 等. 焊缝高熵化研究现状与展望[J]. 焊接学报, 2022, 43(4): 7-15.
ZHANG C C, YU L L, WANG Y H, et al.Research Progress of Welding and Joining by Using the High Entropy Alloys as Filler Metals[J]. Transactions of the China Welding Institution, 2022, 43(4): 7-15.
[23] SCHUSTER J C, PAN Z, LIU S H, et al.On the Constitution of the Ternary System Al-Ni-Ti[J]. Intermetallics, 2007, 15(9): 1257-1267.
[24] 周彦邦. 钛合金铸造概论[M]. 北京: 航空工业出版社, 2000.
ZHOU Y B.Introduction to Titanium Alloy Casting[M]. Beijing: Aviation Industry Press, 2000.
[25] 赵云, 刘立斌, 杨家俊, 等. Ti-Al-Nb三元体系50Ti- xAl-yNb的垂直截面[J]. 粉末冶金材料科学与工程, 2020, 25(4): 280-287.
ZHAO Y, LIU L B, YANG J J, et al.Vertical Section of 50Ti-xAl-yNb in Ti-Al-Nb System[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(4): 280-287.
[26] 戴永年, 夏丹葵, 陈燕, 等. 金属在真空中的挥发性[J]. 昆明工学院学报, 1994, 19(6): 26-32.
DAI Y N, XIA D K, CHEN Y, et al.Evaporation of Metals in Vacuum[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 1994, 19(6): 26-32.
[27] CAI Y S, LIU R C, JI H B, et al.Vacuum Brazing TiAl-Based Intermetallics Using Novel Ti-Fe-Mn Eutectic Brazing Alloy[J]. Intermetallics, 2021, 136: 107274.

Funding

Defense Industrial Technology Development Program (JCKY2023601C018)
PDF(10151 KB)

Accesses

Citation

Detail

Sections
Recommended

/