Interface Microstructure and Tensile Strength of TA2 Titanium Alloy Brazed by Ti-Zr-Cu-Ni Filler Metals

LIU Quanming, XIAO Junfeng, TANG Wenshu, GAO Song, SUN Huawei, QIN Jian, CHENG Yafang, LONG Weimin

Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 36-45.

PDF(12586 KB)
PDF(12586 KB)
Journal of Netshape Forming Engineering ›› 2025, Vol. 17 ›› Issue (6) : 36-45. DOI: 10.3969/j.issn.1674-6457.2025.06.004
Precision Brazing

Interface Microstructure and Tensile Strength of TA2 Titanium Alloy Brazed by Ti-Zr-Cu-Ni Filler Metals

  • LIU Quanming1*, XIAO Junfeng1*, TANG Wenshu1, GAO Song1, SUN Huawei2, QIN Jian2, CHENG Yafang2, LONG Weimin2
Author information +
History +

Abstract

The work aims to utilize self-made Ti-Zr-Cu-Ni filler metals to achieve TA2 titanium alloy connection, analyze the microstructure of Ti-Zr-Cu-Ni filler metals and the interface microstructure, erosion resistance and tensile strength of the brazed joints and provide theoretical support for the research and development of titanium based filler metals and brazing processes for repairing the damaged components of gas turbine. SEM and XRD were used to analyze the microstructure of filler metals and brazed joints and study the effect of filler metal types on the tensile properties of brazed joints. Reducing Cu and Ni and adding Sn or V in filler metals reduced the size of (Ti, Zr) solid solutions. Sn and V tended to combine with Ti and Zr to form complex crystal phases and converged into the (Ti, Zr) solid solution. The depths of the element diffusion zone were significantly reduced and there was no significant change in the distance of intergranular infiltration. After introduction of 5.0wt.% Sn and 1.5wt.% V, the tensile strength of the brazed joints was 300.6 MPa and 302.7 MPa, respectively. The amorphous filler metals had no obvious crystal phase, the distance of intergranular infiltration significantly increased, and the tensile strength of the brazed joints was 267.0 MPa. The interface of the brazed joints is fully reactive. After introduction of 5.0wt.% Sn and 1.5wt.% V, the tensile strength decreases slightly, while the tensile strength of amorphous filler metal brazed joint decreases significantly, and the plasticity indexes are improved. The crystal formed by only a small amount of trace elements has limited effect on the strength. The metallurgical reaction of amorphous filler metal is sufficient, forming more brittle phases, and resulting in a significant decrease in joint strength. Adding Sn or V formed crystal phases such as Ti2Sn3, Ti6Sn5, Zr5Sn3 or Ni3VZr2, NiV3, Ni2V in the microstructure of brazed joints improves the plasticity of the brazed joints.

Key words

Ti-Zr-Cu-Ni filler metals / microstructure of filler metals / TA2 titanium alloy / brazing interface microstructure / tensile strength of brazed joints

Cite this article

Download Citations
LIU Quanming, XIAO Junfeng, TANG Wenshu, GAO Song, SUN Huawei, QIN Jian, CHENG Yafang, LONG Weimin. Interface Microstructure and Tensile Strength of TA2 Titanium Alloy Brazed by Ti-Zr-Cu-Ni Filler Metals[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 36-45 https://doi.org/10.3969/j.issn.1674-6457.2025.06.004

References

[1] OBHUO M, AZIAKA D S, OSIGWE E, et al.Economic Optimization from Fleets of Aero-Derivative Gas Turbines Utilising Flared Associated Gas[J]. International Journal of Thermofluids, 2020, 7: 100049.
[2] ABUDU K, IGIE U, ROUMELIOTIS I, et al.Impact of Gas Turbine Flexibility Improvements on Combined Cycle Gas Turbine Performance[J]. Applied Thermal Engineering, 2021, 189: 116703.
[3] 彭建强, 张宏涛, 王景生, 等. 中小燃气轮机关键部件用钛合金和变形高温合金对比分析[J]. 东方汽轮机, 2020(2): 58-62.
PENG J Q, ZHANG H T, WANG J S, et al.Comparison Analysis of Titanium Alloy and Wrought Superalloy for Key Parts of Light Duty Gas Turbine[J]. Dongfang Turbine, 2020(2): 58-62.
[4] LONG F, LIU Q, CHEN G Q, et al.Improved Corrosion Resistance Achieved in a Friction Stir Processed Mg-5Zn-0.3Ca Alloy with Fragmented Precipitates[J]. Corrosion Science, 2022, 208: 110675.
[5] AHMADIZADEH E, DERAKHSHANDEH-HAGHIGHI R, RABIEZADEH A, et al.Creep and Oxidation Behavior of GTAW Welded ET45 Micro Alloy Tube[J]. Metallurgical and Materials Transactions A, 2022, 53(4): 1361-1378.
[6] 方新文, 管佳佳. TC4钛合金在准静态拉伸下的本构模型及失效参数[J]. 机械强度, 2022, 44(4): 831-836.
FANG X W, GUAN J J.Constitutive Model and Failure Parameters of TC4 Titanium Alloy under Quasi-Static Tensile[J]. Journal of Mechanical Strength, 2022, 44(4): 831-836.
[7] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(8): 22-28.
ZHUO Y M, CHEN Y H, YANG C L.Research Status and Prospect of Welding Repair Technology for Aero- Engine Blades[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 22-28.
[8] XIA Y Q, MA Z, DU Q, et al.Microstructure and Properties of the TiAl/GH3030 Dissimilar Joints Vacuum-Brazed with a Ti-Based Amorphous Filler Metal[J]. Materials Characterization, 2024, 207: 113520.
[9] HOWDEN D G, MONROE R W.Suitable Alloys for Brazing Titanium Heat Exchangers[J]. Battelle Columbus Labs, 1972, 51(1): 31-36.
[10] 陈波, 毛唯, 谢永慧, 等. Ti-Zr-Cu-Ni-Co系新钎料的成分设计及TC4合金钎焊接头的力学性能[J]. 航空材料学报, 2006, 26(1): 59-62.
CHEN B, MAO W, XIE Y H, et al.Design of Ti-Zr-Cu- Ni-Co System Ti-Based Brazing Alloy and Mechanical Properties of TC4 Brazed Joints[J]. Journal of Aeronautical Materials, 2006, 26(1): 59-62.
[11] WU Q L, LONG W M, ZHANG L, et al.The Microstructure and Wear Behavior of WC-Reinforced Diamond Composite Coating[J]. Welding in the World, 2024, 68(7): 1685-1692.
[12] 祖家泽, 马佳, 秦建, 等. 航空航天领域常用高温钎料研究现状[J]. 精密成形工程, 2024, 16(7): 191-204.
ZU J Z, MA J, QIN J, et al.Current Research Status of Commonly Used High-Temperature Brazing Filler Metal in the Aerospace Field[J]. Journal of Netshape Forming Engineering, 2024, 16(7): 191-204.
[13] 张丽霞, 丁彦华, 孙名家, 等. TC4低熔蚀钎料设计及对接头组织和性能的影响[J]. 现代交通与冶金材料, 2024, 4(4): 50-57.
ZHANG L X, DING Y H, SUN M J, et al.TC4 Low Erosion Brazing Metal Design and Its Influence on Joint Microstructure and Properties[J]. Modern Transportation and Metallurgical, 2024, 4(4): 50-57.
[14] 刘全明, 肖俊峰, 龙伟民, 等. Sn改性Ti-Zr-Cu-Ni钎料的微观组织和力学性能[J]. 金属热处理, 2023, 48(3): 209-214.
LIU Q M, XIAO J F, LONG W M, et al.Microstructure and Mechanical Properties of Sn-Modified Ti-Zr-Cu-Ni Filler Metals[J]. Heat Treatment of Metals, 2023, 48(3): 209-214.
[15] FENG L, LIU Q M, LONG W M, et al.Microstructures and Mechanical Properties of V-Modified Ti-Zr-Cu-Ni Filler Metals[J]. Materials, 2022, 16(1): 199.
[16] LIU D S, LONG W M, LEDNEV V N, et al.Influence of Nb Additive on Alkaline Corrosion Behavior of Slag-Free Self-Shielded Metal-Cord Welding Overlay[J]. Journal of Materials Engineering and Performance, 2023, 32(22): 10064-10076.
[17] LONG W M, LIU D S, QIN J, et al.Wear Resistance of Laser Brazing Diamond Coating with and without Pre-Machining V-Groove on Diamond Surface[J]. Journal of Adhesion Science and Technology, 2023, 37(2): 319-333.
[18] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1-4.
LONG W M, ZHANG G X, ZHANG Q K, et al.In-Situ Synthesis of High Strength Ag Brazing Filler Metals during Brazing Process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1-4.
[19] 杨浩哲, 裴夤崟, 秦建, 等. TiZrCuNi粉状钎料真空钎焊TA2纯钛接头界面组织及力学性能[J]. 电焊机, 2022, 52(6): 112-117.
YANG H Z, PEI Y Y, QIN J, et al.Microstructure and Mechanical Properties of Pure Titanium TA2 Vacuum Brazing Joint with TiZrCuNi Powder Brazing Filler Metal[J]. Electric Welding Machine, 2022, 52(6): 112-117.
[20] 王星星, 吴港, 何鹏, 等. 陶瓷/金属异质钎焊连接研究进展[J]. 稀有金属材料与工程, 2022, 51(7): 2689-2697.
WANG X X, WU G, HE P, et al.Research Progress of Ceramic/Metal Dissimilar Brazing Technology[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2689-2697.
[21] 王娜, 刘全明, 肖俊峰, 等. TiZrCuNi钎料钎焊TA2钛接头的组织与性能[J]. 热加工工艺, 2022, 51(23): 136-139.
WANG N, LIU Q M, XIAO J F, et al.Microstructure and Properties of TA2 Titanium Joints Brazed with TiZrCuNi Filler Metals[J]. Hot Working Technology, 2022, 51(23): 136-139.
[22] LU Q B, ZHONG S J, LI S N, et al.Interfacial Behavior and Thermostability of the TZM High Temperature Brazing Seam with Ti-based Brazing Filler Metals[J]. Rare Metal Materials and Engineering, 2020, 49(3): 849-856.
[23] 张雷, 龙伟民, 樊志斌, 等. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 230-233.
ZHANG L, LONG W M, FAN Z B, et al.Effect of CuTi on the Microstructure and Wear Resistance of Diamond/AlSi Composite Braze Coating on Ti-6Al-4V Alloy[J]. Materials Reports, 2024, 38(21): 230-233.
[24] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138-23144.
LONG W M, HAO Q L, FU Y C, et al.Research Progress of Filler Metals for Brazing Diamond Tools[J]. Materials Reports, 2020, 34(23): 23138-23144.
[25] LIU Q M, XIAO J F, TANG W S, et al.Shear Properties of the Sapphire/Interlayer/TC4 Alloy Brazed Joints Using Ag-Cu-Ti Filler Metals[J]. Rare Metal Materials and Engineering, 2025, 46(2): 55-61.
[26] LI S N, DU D, JIU Y T, et al.Brazing of C/C Composite and TiAl Alloy Using TiNiSi Filler Metal Added Cu Interlayer[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1277-1284.
[27] 龙伟民, 井培尧, 秦建. 极端条件下焊接技术的研究进展[J]. 电焊机, 2023, 53(4): 1-13.
LONG W M, JING P Y, QIN J.Research Progress of Welding Technology under Extreme Conditions[J]. Electric Welding Machine, 2023, 53(4): 1-13.

Funding

The National Natural Science Foundation of China (52304385); Key Research and Development Program of Shaanxi (2024GX-YBXM-214); Science and Technology Project of China Huaneng Group Co., Ltd. (HNKJ18-H11)
PDF(12586 KB)

Accesses

Citation

Detail

Sections
Recommended

/