汽车转向节轴套复合挤压工艺研究

张良英, 詹艳然, 卢锦焘

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 228-235.

PDF(4520 KB)
PDF(4520 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 228-235. DOI: 10.3969/j.issn.1674-6457.2025.07.024
先进制造技术与装备

汽车转向节轴套复合挤压工艺研究

  • 张良英1, 詹艳然2, 卢锦焘3
作者信息 +

Study on the Compound Extrusion Process of Automobile Steering Knuckle Shaft Sleeve

  • ZHANG Liangying1, ZHAN Yanran2, LU Jintao3
Author information +
文章历史 +

摘要

目的 提升汽车转向节轴套加工材料利用率,获得理想尺寸精度及较好的疲劳强度,研究汽车转向节轴套复合挤压工艺。方法 针对汽车转向节轴套杯-杆型结构特征,采用理论工艺分析与成形模拟分析相结合的方法,在对比一道次复合挤压成形工艺方案和预加工复合挤压工艺方案的基础上,确定最终工艺方案,分析了复合挤压时的金属流动规律及等效应变分布,设计了挤压模具并进行了试验验证。结果 汽车转向节轴套复合挤压工艺方案为:机加工—退火及草酸盐处理—复合挤压—杯部钻孔。在该方案下,凸模承受的载荷呈现“增大-平缓-增大-略微下降-显著增大”的变化趋势,且最大载荷更低,模具充填效果更好;在复合挤压时,正挤压占比远大于反挤压占比,分流面主要分布在杯壁下段至35°锥角区域内,界面会随着凸模的下行呈现出“模糊-清晰-模糊”的变化趋势;最大等效应变主要分布在制件尺寸变化区域。结论 复合挤压金属流动规律及等效应变分布规律可以为同类零件复合挤压技术推广应用提供一定的理论依据;预加工复合挤压工艺成形汽车转向节轴套方案合理,可满足实际大批量生产需求。

Abstract

The work aims to study the compound extrusion process of automobile steering knuckle shaft sleeve, in order to improve the material utilization rate in the processing of automobile steering knuckle shaft sleeves and achieve ideal dimensional accuracy as well as better fatigue strength. Based on the cup-rod structural characteristics of automobile steering knuckle shaft sleeve, a method combining theoretical process analysis and forming simulation analysis was adopted. After comparison between the one-pass compound extrusion forming process scheme and the pre-processed compound extrusion process scheme, the final process scheme was determined. The metal flow law and equivalent strain distribution during compound extrusion were analyzed, and an extrusion die was designed for experimental verification. The compound extrusion process scheme for automobile steering knuckle shaft sleeve was as follows: machining, annealing and oxalate treatment, compound extrusion, and drilling. Under this scheme, the load borne by the punch exhibited a trend of “increasing-stabilizing-increasing again-slightly decreasing-significantly increasing”, with a lower maximum load and better die filling effect. During compound extrusion, the proportion of forward extrusion was much larger than that of backward extrusion. The diversion plane was mainly distributed from the lower section of the cup wall to the 35° cone angle, and the interface exhibited a trend of “blurry-clear-blurry” as the punch descended. The maximum equivalent strain was mainly distributed in the area where the dimensions of the part changed. The laws of metal flow and equivalent strain distribution during compound extrusion can provide a certain theoretical basis for the promotion and application of compound extrusion technology for similar parts. The pre-processed compound extrusion process for forming automobile steering knuckle shaft sleeves is reasonable and can fulfill the requirements of actual mass production.

关键词

汽车转向节轴套 / 复合挤压 / 工艺设计 / 数值模拟 / 试验研究

Key words

automobile steering knuckle shaft sleeve / compound extrusion / process design / numerical simulation / experimental research

引用本文

导出引用
张良英, 詹艳然, 卢锦焘. 汽车转向节轴套复合挤压工艺研究[J]. 精密成形工程. 2025, 17(7): 228-235 https://doi.org/10.3969/j.issn.1674-6457.2025.07.024
ZHANG Liangying, ZHAN Yanran, LU Jintao. Study on the Compound Extrusion Process of Automobile Steering Knuckle Shaft Sleeve[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 228-235 https://doi.org/10.3969/j.issn.1674-6457.2025.07.024
中图分类号: TG376   

参考文献

[1] 李太宗, 王建, 杜凯奇, 等. 面向汽车行业的机械制造智能化发展趋势研究[J]. 汽车知识, 2024, 24(4): 7-9.
LI T Z, WANG J, DU K Q, et al.Research on the Development Trend of Intelligent Mechanical Manufacturing for the Automotive Industry[J]. Automotive Knowledge, 2024, 24(4): 7-9.
[2] YANG N, YANG L, XU F, et al.Vehicle Emission Changes in China under Different Control Measures over Past Two Decades[J]. Sustainability, 2022, 14(24): 16367.
[3] 夏巨谌, 邓磊, 张茂, 等. 高端商务车铝合金转向节精密铸锻复合成形工艺优化[J]. 锻压技术, 2024, 49(8): 1-5.
XIA J C, DENG L, ZHANG M, et al.Optimization on Precision Casting and Forging Composite Forming Process for Aluminum Alloy Steering Knuckle of High-End Business Vehicle[J]. Forging & Stamping Technology, 2024, 49(8): 1-5.
[4] 潘成海, 曾琦, 董旭刚, 等. 汽车转向节精锻工艺设计与锻造主机选型[J]. 锻压技术, 2021, 46(8): 26-31.
PAN C H, ZENG Q, DONG X G, et al.Design on Precision Forging Process of Automobile Steering Knuckle and Selection of Forging Main Press[J]. Forging & Stamping Technology, 2021, 46(8): 26-31.
[5] 成林, 张文明, 隋美丽. 热锻参数对汽车转向节力学性能的影响分析[J]. 热加工工艺, 2018, 47(9): 148-151.
CHENG L, ZHANG W M, SUI M L.Effect of Hot Forging Parameters on Mechanical Properties of Automobile Steering Knuckle[J]. Hot Working Technology, 2018, 47(9): 148-151.
[6] 胡祚庥, 刘淑梅, 毛欣然. 基于正交试验与响应面法汽车转向节模具结构优化[J]. 锻压技术, 2022, 47(8): 178-184.
HU Z X, LIU S M, MAO X R.Structural Optimization on Automobile Steering Knuckle Mold Based on Orthogonal Test and Response Surface Method[J]. Forging & Stamping Technology, 2022, 47(8): 178-184.
[7] 梁复明, 夏华, 朱雄. 异形轴套冷挤压成形工艺优化研究[J]. 热加工工艺, 2016, 45(17): 123-125.
LIANG F M, XIA H, ZHU X.Research on Process Optimization of Profiled Shaft Sleeve Cold Extrusion Forming[J]. Hot Working Technology, 2016, 45(17): 123-125.
[8] 王华君, 夏巨谌, 胡国安. 复杂杯杆型零件成形工艺的比较研究[J]. 热加工工艺, 2003, 32(1): 29-31.
WANG H J, XIA J C, HU G A.Study on Forming Process for the Complex Part with Cup-Shaft[J]. Hot Working Technology, 2003, 32(1): 29-31.
[9] 王耀伟, 闫五柱, 梁淑静. 一种新型压合衬套冷挤压工艺研究[J]. 航空制造技术, 2024, 67(10): 107-114.
WANG Y W, YAN W Z, LIANG S J.A Novel Cold Expansion Technology with Forcemate Bushing[J]. Aeronautical Manufacturing Technology, 2024, 67(10): 107-114.
[10] 谢建新, 刘静安. 金属挤压理论与技术[M]. 北京: 冶金工业出版社, 2001.
XIE J X, LIU J A.Theory and Technology of Metal Extrusion[M]. Beijing: Metallurgical Industry Press, 2001.
[11] 刘峙, 李宁. T2铜套反向冷挤压模具设计[J]. 金属加工(冷加工), 2022(10): 69-73.
LIU Z, LI N.Design of Reverse Cold Extrusion Die for T2 Copper Sleeve[J]. Metal Working (Metal Cutting), 2022(10): 69-73.
[12] CAN Y, MISIRLI C.Analysis of Spur Gear Forms with Tapered Tooth Profile[J]. Materials & Design, 2008, 29(4): 829-838.
[13] 鲁世红, 高越, 李大川. 开缝衬套冷挤压强化技术研究进展[J]. 锻压技术, 2021, 46(1): 1-9.
LU S H, GAO Y, LI D C.Research Progress of Split Sleeve Cold Expansion Strengthening Technology[J]. Forging & Stamping Technology, 2021, 46(1): 1-9.
[14] 金李勇, 尹忠慰, 蒋丹, 等. 17-4 PH不锈钢表面草酸盐膜润滑性能的影响因素[J]. 东华大学学报(自然科学版), 2016, 42(4): 496-499.
JIN L Y, YIN Z W, JIANG D, et al.Effects of Different Factors on Lubricity of Oxalate Treated Film on 17-4 PH Stainless Steel[J]. Journal of Donghua University (Natural Science), 2016, 42(4): 496-499.
[15] 杨永超, 李玉贵, 赵子钧. 430不锈钢的连续退火工艺[J]. 金属热处理, 2024, 49(8): 130-135.
YANG Y C, LI Y G, ZHAO Z J.Continuous Annealing Process of 430 Stainless Steel[J]. Heat Treatment of Metals, 2024, 49(8): 130-135.
[16] 吴诗惇. 挤压理论[M]. 北京: 国防工业, 1994: 136-139.
WU S D.Extrusion Theory[M]. Beijing: National Defense Industry Press, 1994: 136-139.
[17] 张芳萍, 成鑫尧, 曹宇, 等. 基于修正Johnson-Cook本构模型的2209双相不锈钢高温流变行为[J]. 锻压技术, 2023, 48(6): 223-230.
ZHANG F P, CHENG X Y, CAO Y, et al.High Temperature Rheological Behavior of 2209 Duplex Stainless Steel Based on Modified Johnson-Cook Constructive Model[J]. Forging & Stamping Technology, 2023, 48(6): 223-230.
[18] 白鹏翔, 倪英荐, 雷冬. 数字图像相关的不锈钢真实应力应变关系测量[J]. 科学技术与工程, 2020, 20(13): 5240-5246.
BAI P X, NI Y J, LEI D.Measurement of True Stress-Strain Relationship of Stainless Steel Based on Digital Image Correlation Technique[J]. Science Technology and Engineering, 2020, 20(13): 5240-5246.
[19] WANG S Q, YUAN L H, LIANG S.Effects of the Friction Coefficient on Cold Extrusion Process of Axial Symmetry Parts[J]. Machine Tool & Hydraulics, 2018, 46(12): 71-75.
[20] 林忠亮, 白清顺, 王洪飞, 等. 孔用衬套冷挤压的强化机理与疲劳寿命研究进展[J]. 表面技术, 2023, 52(4): 1-14.
LIN Z L, BAI Q S, WANG H F, et al.Research Progress of Strengthening Mechanism and Fatigue Life in Cold Extrusion of Bushing for Hole[J]. Surface Technology, 2023, 52(4): 1-14.
[21] 黄绍泽, 朱江新. 金属成形模拟过程中局部网格重划技术研究[J]. 锻压技术, 2012, 37(5): 137-140.
HUANG S Z, ZHU J X.Research on an Automatic Local Remeshing Technique for Metal Forming Simulation[J]. Forging & Stamping Technology, 2012, 37(5): 137-140.
[22] YAO Y L, SUN C, XIU S C, et al.Study on Dynamic Recrystallization-Based Microstructure Evolution Mechanism of 40Cr during Strengthening Grinding[J]. Journal of Materials Processing Technology, 2022, 309: 117754.
[23] AHMAD A S, WU Y X, GONG H, et al.Finite Element Prediction of Residual Stress and Deformation Induced by Double-Pass TIG Welding of Al2219 Plate[J]. Materials, 2019, 12(14): 2251.
[24] 郑伟刚, 束昊, 吴启山, 等. 球面滑履冷挤压模脱模装置的改进设计研究[J]. 锻压技术, 2009, 34(3): 100-102.
ZHENG W G, SHU H, WU Q S, et al.Improved Design and Research of Die Unloading Installation in Cold Extrusion Die of Spherical Slippery Footstep[J]. Forging & Stamping Technology, 2009, 34(3): 100-102.
[25] 罗中华, 张质良. 多层压配组合冷挤压凹模的优化设计[J]. 塑性工程学报, 2003, 10(4): 38-41.
LUO Z H, ZHANG Z L.Optimum Design of Multi-Layer Press-Fit Composite Cold Extrusion Concave Die[J]. Journal of Plasticity Engineering, 2003, 10(4): 38-41.
[26] 孙克锐, 徐海利. 双杯壳类零件冷挤压成形工艺及模具设计[J]. 锻压技术, 2022, 47(7): 154-161.
SUN K R, XU H L.Cold Extrusion Process and Die Design of Double Cup Shell Parts[J]. Forging & Stamping Technology, 2022, 47(7): 154-161.
[27] 张丽蓉, 侯红玲, 梅苗园, 等. 润滑液对内螺纹冷挤压成形质量的影响[J]. 塑性工程学报, 2024, 31(8): 69-75.
ZHANG L R, HOU H L, MEI M Y, et al.Influence of Lubricating Fluid on Forming Quality of Internal Thread during Cold Extrusion[J]. Journal of Plasticity Engineering, 2024, 31(8): 69-75.

基金

福建省中青年教师教育科研项目(JAT201131)

PDF(4520 KB)

Accesses

Citation

Detail

段落导航
相关文章

/