目的 为精确控制轧辊辊面温度,对极片热轧流道布置与流体速度进行系统性研究。方法 分析了单、双螺旋流道布置对轧辊辊面温度的影响,设计了螺距值40、50、60 mm 3种等螺距双流道和3种不等螺距双流道方案,设置了1、2、3 m/s 3种热油速度,共构建了18种热流道工况;利用ANSYS仿真软件对18种工况进行模拟,分析轧辊等螺距、不等螺距、流速对轧辊温度的影响规律,利用方差获得温度均匀的最优参数。结果 流速对轧辊辊面温度的影响较大,随着流速的增大,对流换热和导热热阻均增加,但导热热阻增加更为明显,当速度达到临近值时,温度增加量达到最大,因此合理的流速是保证辊面温度的重要因素;在等间距流道条件下,流道间距越小,辊面温度均匀性越高,在满足流道强度和干涉前提下,流道间距取最小值为40 mm;不等距流道条件下的轧辊辊面温度均匀性好于等螺距流道方案下的,轧辊中段流道螺距P2的最优值为70 mm,此时辊面温差最小。结论 当流速为2.2 m/s时,辊面温度均匀性最好;在等螺距最小间距40 mm条件下,辊面最小温度差为±1.55 ℃;在轧辊中段流道螺距P2=70 mm的不等距条件下,辊面温度差为±0.71 ℃,进一步提高了辊面温度均匀性。
Abstract
In order to achieve precise and uniform control of roller surface temperature, the work aims to carry out systematic research on the arrangement of flow channels and fluid velocity. The effect of the arrangement of single and double helix flow channels on the surface temperature of the roller was analyzed. Three equal pitch double flow channel schemes with pitch values of 40, 50, and 60 mm, as well as three non-uniform double flow channel schemes, were designed. Three hot oil velocities of 1, 2, and 3 mm/s were set, and a total of 18 hot flow channel working conditions were constructed. The ANSYS simulation software was used to simulate 18 working conditions and the effect of equal pitch, unequal pitch, and flow velocity on the temperature of the roller was analyzed. The optimal solution for uniform temperature was obtained with the equal difference analysis method. The flow velocity had a significant impact on the surface temperature of the roller. With the increasing flow velocity, both convective heat transfer and thermal conduction resistance were enhanced. However, the enhancement of thermal conduction resistance was more significant. When the velocity reached a near value, the temperature increase reached its maximum. Therefore, a reasonable flow velocity was an important factor in ensuring the surface temperature of the roller. Under the condition of equal spacing flow channels, the smaller the channel spacing, the higher the temperature uniformity of the roller surface. Under the premise of satisfying channel strength and interference, the minimum channel spacing was taken as 40 mm. Under the condition of unequal spacing flow channels, the temperature uniformity of the roller surface was better than that of the equal pitch flow channel scheme. The optimal value for the flow channel spacing P2 in the mid-section of the roller was 70 mm, with a smallest temperature difference on the roller surface. When the flow velocity is 2.2 m/s, the temperature uniformity on the roller surface is the best. Under the condition of a minimum pitch of 40 mm, the minimum temperature difference on the roller surface is ±1.55 ℃. Under the unequal spacing condition with a mid-section channel pitch of P2=70 mm in the roller, the temperature difference on the roller surface is ±0.71 ℃, further improving the uniformity of roller surface temperature.
关键词
电池极片 /
轧辊热模拟 /
双螺旋流道 /
不等距流道 /
温度均匀性
Key words
battery pole plate /
thermal simulation of roller /
double helix flow channel /
unequal spacing flow channel /
temperature uniformity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗雨, 王耀玲, 李丽华, 等. 锂电池制片工艺对电池一致性的影响[J]. 电源技术, 2013, 37(10): 1757-1759.
LUO Y, WANG Y L, LI L H, et al.Influence of Preparation Techniques Upon Uniformity of Lithium-Ion Batteries[J]. Chinese Journal of Power Sources, 2013, 37(10): 1757-1759.
[2] 杨绍斌, 梁正. 锂离子电池制造工艺原理与应用[C]// 第五届全国新能源与化工新材料学术会议, 2020.
YANG S B, LIANG Z.Principles and Applications of Lithium-Ion Battery Manufacturing Process[C]// 10th International Conference on Intelligent Logistics, 2020.
[3] ZHANG J P, SUN J N, HUANG H G, et al.Influence of Calendering Process on the Structural Mechanics and Heat Transfer Characteristics of Lithium-Ion Battery Electrodes via DEM Simulations[J]. Particuology, 2024, 85: 252-267.
[4] 王永洲. 电池极片轧机轧辊有限元分析[D]. 天津: 天津大学, 2013: 13-17.
WANG Y Z.Finite Element Analysis of Battery Electrode Sheet Rolling Mill Rolls[D]. Tianjin: Tianjin University, 2013: 13-17.
[5] 董野. 流涎成形中流涎辊的温度控制技术研究[D]. 南京: 南京理工大学, 2007: 34-46.
DONG Y.Study on Temperature Control Technology of Salivation Roller in Salivation Forming[D]. Nanjing: Nanjing University of Science and Technology, 2007: 34-46.
[6] 肖述文, 王兴东, 周三春, 等. 导热油加热热辊压机轧辊加温过程、温度-应力耦合分析及试验研究[J]. 机械设计与制造, 2015(9): 143-145.
XIAO S W, WANG X D, ZHOU S C, et al.The Heating Process and Coupling Analysis of Temperature-Stress and Experimental Study of Roll of the Hot Press Machine Heated by Heating Oil[J]. Machinery Design & Manufacture, 2015(9): 143-145.
[7] 黄碧其. 辊压极片横向厚度一致性解决方向和方法探析[J]. 中国设备工程, 2022(15): 106-108.
HUANG B Q.Analysis on the Direction and Method of Solving the Consistency of Transverse Thickness of Rolled Pole Pieces[J]. China Plant Engineering, 2022(15): 106-108.
[8] 康少云. 锂电池极片轧辊流固耦合传热数值模拟及分析[D]. 秦皇岛: 燕山大学, 2019.
KANG S Y.Numerical Simulation and Analysis of Fluid-solid Coupling Heat Transfer of Lithium Battery Pole Piece Roll[D]. Qinhuangdao: Yanshan University, 2019.
[9] 张喆, 周月明, 白云峰, 等. HFW中频热处理线圈结构对加热效果的影响[J]. 焊管, 2009, 32(1): 41-45.
ZHANG Z, ZHOU Y M, BAI Y F, et al.Loop Structure of HFW Intermediate Frequency Heating Treatment Effect to Heating[J]. Welded Pipe and Tube, 2009, 32(1): 41-45.
[10] 陈昊, 周月明, 华学明. 感应加热过程中工件表层温度分布及机理分析[J]. 金属热处理, 2011, 36(2): 66-69.
CHEN H, ZHOU Y M, HUA X M.Temperature Distribution in Surface Layer of Workpiece during Induction Heating Process and Its Mechanism Analysis[J]. Heat Treatment of Metals, 2011, 36(2): 66-69.
[11] 王文成. 轧辊感应加热系统开发[D]. 天津: 天津大学, 2012.
WANG W C.Development of Roller Induction Heating System[D]. Tianjin: Tianjin University, 2012.
[12] 刘志栋, 付晓斌, 赵利平, 等. 二辊轧机轧辊感应加热模拟研究[J]. 塑性工程学报, 2022, 29(3): 200-207.
LIU Z D, FU X B, ZHAO L P, et al.Simulation Research on Induction Heating for Roll of Two-High Rolling Mill[J]. Journal of Plasticity Engineering, 2022, 29(3): 200-207.
[13] 国思茗, 朱鹤. 锂电池极片辊压工艺变形分析[J]. 精密成形工程, 2017, 9(5): 225-229.
GUO S M, ZHU H.Rolling Deformation of Lithium Battery Electrode[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 225-229.
[14] 井然, 冯华, 王永庚, 等. 电池极片电磁热辊的温度控制的分析与仿真[J]. 系统仿真学报, 2018, 30(6): 2245-2250.
JING R, FENG H, WANG Y G, et al.Analysis and Simulation of Temperature Control for Battery Pole Piece Electromagnetic Heating Roller[J]. Journal of System Simulation, 2018, 30(6): 2245-2250.
[15] CHEN P, LU S H.Surface Forming Mechanism and Numerical Simulation Study in Four-Roll Flexible Rolling Forming[J]. Heliyon, 2024, 10(23): e40166.
[16] 张婷婷, 张春伟. 温轧机的轧辊加热方式研究[J]. 宝钢技术, 2016(5): 55-58.
ZHANG T T, ZHANG C W.Research on the Heating Method of the Roller on the Warm Rolling Mill[J]. Baosteel Technology, 2016(5): 55-58.
[17] 李杨. 辊压机加热辊热仿真分析[J]. 机械制造, 2022, 60(5): 52-55.
LI Y.Thermal Simulation Analysis of Heating Roller of Rolling Machine[J]. Machinery, 2022, 60(5): 52-55.
[18] 张斌洋, 任晓龙, 赵江铭, 等. 锂离子电池双螺旋结构流道液冷板数值优化[J]. 储能科学与技术, 2024, 13(10): 3545-3555.
ZHANG B Y, REN X L, ZHAO J M, et al.Numerical Optimization of a Liquid Cooling Plate with Double Helix Flow Channel for Lithium-Ion Battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3545-3555.
[19] 安玉环. 锂电池极片热轧辊流场分析及配油方案改进[D]. 秦皇岛: 燕山大学, 2019.
AN Y H.Flow Field Analysis of Hot Roller of Lithium Battery Pole Piece and Improvement of Oil Distribution Scheme[D]. Qinhuangdao: Yanshan University, 2019.
[20] 黄凤祥. 导热辊内部孔道结构及其在锂电池极片轧制中的应用问题研究[J]. 湖北科技学院学报, 2024, 44(6): 147-153.
HUANG F X.Research on the Internal Pore Structure of Thermal Roller and Its Application in Lithium Battery Pole Rolling[J]. Journal of Hubei University of Science and Technology, 2024, 44(6): 147-153.
[21] 安玉环, 李徐佳, 王能河, 等. 直通式热轧辊流道改进[J]. 科学技术与工程, 2019, 19(30): 152-158.
AN Y H, LI X J, WANG N H, et al.Improvement of Straight-through Hot Roll Runner[J]. Science Technology and Engineering, 2019, 19(30): 152-158.
[22] 黄友彬, 袁和平, 郭宜煌, 等. 锂电池极片轧辊力热耦合仿真分析[J]. 佳木斯大学学报(自然科学版), 2024, 42(5): 6-10.
HUANG Y B, YUAN H P, GUO Y H, et al.Thermal Coupling Simulation Analysis of Lithium Battery Electrode Roll[J]. Journal of Jiamusi University (Natural Science Edition), 2024, 42(5): 6-10.
[23] 肖述文,王兴东,周三春,等,导热油加热热辊压机轧辊加温过程、温度-应力耦合分析及试验研究[J]. 机械设计与制造, 2015(09):143-145+151.
XIAO S W, WANG X D, ZHOU S C, et al.The Heating Process and Coupling Analysis of Temperature-Stress and Experimental Study of Roll of the Hot Press Machine Heated by Heating Oil[J]. Machinery Design & Manufacture, 2015(09):143-145+151.
[24] 康少云. 锂电池极片轧辊流固耦合传热数值模拟及分析[D]. 秦皇岛:燕山大学,2019.
KANG S Y.Numerical Simulation And Analysis of Fluid-Solid Coupling Heat Transfer of Lithium Batteries pole Rolls[D]. Qinhuangdao: Yanshan University, 2019.
[25] 周喜灵, 文劲松. 一种螺旋流道辊的数值模拟及结构优化[J]. 中国塑料, 2015, 29(6): 72-77.
ZHOU X L, WEN J S.Numerical Simulation and Optimum Design of Spirally Grooved Runner Rollers[J]. China Plastics, 2015, 29(6): 72-77.
[26] 殷术贵, 张华伟, 吴智恒, 等. 流延辊出水腔结构优化仿真研究[J]. 塑料科技, 2017, 45(11): 90-94.
YIN S G, ZHANG H W, WU Z H, et al.Structure Optimization Simulation Research of Casting Roller in Water Outlet Cavity[J]. Plastics Science and Technology, 2017, 45(11): 90-94.
基金
河北省重大科技支撑计划(242Q2201Z); 河北省高等学校科学技术研究项目(ZD2022028); 邢台市重大科技专项(2023ZZ017)