镍基高温合金极薄带精密轧制技术研究进展

徐超, 吴畏, 吴勇, 孟刚, 王方军, 刘海定, 王东哲, 肖军

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 206-218.

PDF(9516 KB)
PDF(9516 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 206-218. DOI: 10.3969/j.issn.1674-6457.2025.07.022
高温合金成形

镍基高温合金极薄带精密轧制技术研究进展

  • 徐超1,2,3,4, 吴畏1,2,3,4,*, 吴勇1,2,3,4, 孟刚1,2,3,4, 王方军1,2,3,4, 刘海定1,2,3,4, 王东哲1,2,3,4, 肖军1,2,3,4
作者信息 +

Research Progress on Precision Rolling Technology of Nickel Based High-temperature Alloy Ultra-thin Strip

  • XU Chao1,2,3,4, WU Wei1,2,3,4,*, WU Yong1,2,3,4, MENG Gang1,2,3,4, WANG Fangjun1,2,3,4, LIU Haiding1,2,3,4, WANG Dongzhe1,2,3,4, XIAO Jun1,2,3,4
Author information +
文章历史 +

摘要

镍基高温合金极薄带被广泛应用于高端装备制造领域。相较于传统轧制,精密轧制技术在镍基高温合金极薄带表面/板形质量控制、力学性能调控、尺寸精度把控等方面更具优势。本文介绍了六辊、十二辊、二十辊精密轧制设备加工能力及板形调控手段,探讨了镍基合金精密轧制宽幅受限的原因,探究了极薄带轧制过程中表面与板形缺陷的形成机制,分析了包括辊形控制、特征尺寸、轧制工艺在内的极薄带精密轧制成形关键控制因素,着重分析了凸度、窜辊、宽度、厚度、宽厚比、变形量等因素对镍基高温合金极薄带形状/性能调控的影响规律,总结了镍基高温合金极薄带精密轧制成形技术的应用现状,包括装备设计制造、在线与离线检测技术应用、国内外制造水平对比,探究了未来极薄带轧制的研究趋势,通过将极限可轧厚度研究与极薄带轧制工艺相结合,在晶体塑性变形行为的基础上,衍生出极薄带轧制新方法。最后提出了共性结论与局限性看法,并对未来进行了展望,即镍基高温合金极薄带精密轧制技术将朝智能化、绿色化方向发展。

Abstract

Nickel based high-temperature alloy ultra-thin strips are widely used in the field of high-end equipment manufacturing. Compared with traditional rolling, precision rolling technology has more advantages in controlling the surface/shape quality, mechanical properties, and size accuracy of nickel based high-temperature alloy ultra-thin strips. In this article, the processing capabilities and shape control methods of 6-high, 12-high, and 20-high precision rolling equipment are introduced; the reasons for the limited width of precision rolling of nickel based alloys are discussed; the formation mechanism of surface and plate shape defects during the rolling process of ultra-thin strips are discussed; the key control factors of ultra-thin strips precision rolling forming, including roll shape control, feature size, and rolling process are analyzed, focusing on the influence of convexity, intermediate rolls shifting, width, thickness, width to thickness ratio and other factors on the shape/performance control of nickel based high-temperature alloy ultra-thin strips; current application status of precision rolling forming technology for nickel based high-temperature alloy ultra-thin strips, including equipment design and manufacturing, application of online and offline detection technology, and comparison of domestic and foreign manufacturing levels, are summarized; the future research trend of ultra-thin strip rolling are analyzed, deriving a new method for ultra-thin strip rolling based on the crystal plastic deformation behavior by combining the study of ultimate rollable thickness with ultra-thin strips rolling technology. Finally, common conclusions and limitations are proposed, and precision rolling technology of nickel based high-temperature alloys ultra-thin strips will develop towards intelligence and greenness in the future.

关键词

极薄带 / 镍基高温合金 / 精密轧制 / 板形控制 / 凸度调节

Key words

ultra-thin strips / nickel based high-temperature alloys / precision rolling / shape control / convex adjustment

引用本文

导出引用
徐超, 吴畏, 吴勇, 孟刚, 王方军, 刘海定, 王东哲, 肖军. 镍基高温合金极薄带精密轧制技术研究进展[J]. 精密成形工程. 2025, 17(7): 206-218 https://doi.org/10.3969/j.issn.1674-6457.2025.07.022
XU Chao, WU Wei, WU Yong, MENG Gang, WANG Fangjun, LIU Haiding, WANG Dongzhe, XIAO Jun. Research Progress on Precision Rolling Technology of Nickel Based High-temperature Alloy Ultra-thin Strip[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 206-218 https://doi.org/10.3969/j.issn.1674-6457.2025.07.022
中图分类号: TG337.1   

参考文献

[1] ZHANG P, HU C, DING C G, et al.Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy[J]. Materials & Design (1980-2015), 2015, 65: 575-584.
[2] 陈娇, 罗桦, 贺戬, 等. 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成形工程, 2023, 15(1): 156-169.
CHEN J, LUO H, HE J, et al.Research Status of Nickel-Based Superalloy for Aerospace Field and Its Laser Additive Manufacturing Technology[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 156-169.
[3] TEBBAKH S, MENTAR L, MESSAOUDI Y, et al.Effect of Cobalt Content on Electrodeposition and Properties of Co-Ni Alloy Thin Films[J]. Inorganic and Nano-Metal Chemistry, 2021, 51(12): 1796-1802.
[4] 任鸿儒, 高金涛, 王哲, 等. 热处理对电沉积Ni-Fe合金箔组织和力学性能的影响[J]. 材料科学与工艺, 2016, 24(6): 27-33.
REN H R, GAO J T, WANG Z, et al.Effect of Heat Treatment on the Microstructure and Mechanical Properties of Electrodeposited Ni-Fe Alloy Foil[J]. Materials Science and Technology, 2016, 24(6): 27-33.
[5] 罗超, 刘晓, 任忠凯, 等. 金属复合极薄带制备工艺研究进展[J]. 材料导报, 2023, 37(12): 201-206.
LUO C, LIU X, REN Z K, et al.Research Progress in Preparation of Ultra-Thin Metal Composite Foil[J]. Materials Reports, 2023, 37(12): 201-206.
[6] YU S X, WANG Q, DENG X T, et al.Collaboratively Enhancing the Strength and Ductility of GH3600 Nickel-Based Ultra-Thin Strips via the Pre-Precipitation Process[J]. Materials & Design, 2023, 234: 112322.
[7] CUI J J, ZHAO M J, JIANG H C, et al.Evolution and Mechanism of Recrystallization Microstructure and Texture in GH3536 Superalloy Foil and Their Influence on Strength Performance[J]. Materials Science and Engineering: A, 2024, 913: 147012.
[8] YANG L P, JIANG Z Y, ZHANG Y S, et al.High Precision Recognition and Adjustment of Complicated Shape Details in Fine Cold Rolling Process of Ultra-Thin Wide Strip[J]. Journal of Manufacturing Processes, 2018, 35: 508-516.
[9] 曹建国, 江军, 邱澜, 等. 新一代高技术宽带钢冷轧机全机组一体化板形控制[J]. 中南大学学报(自然科学版), 2019, 50(7): 1584-1591.
CAO J G, JIANG J, QIU L, et al.High Precision Integrated Profile and Flatness Control for New-Generation High-Tech Wide Strip Cold Rolling Mills[J]. Journal of Central South University (Science and Technology), 2019, 50(7): 1584-1591.
[10] 陈卓. 新时代10年我国电工钢及20辊轧机发展研究[J]. 电工钢, 2023, 5(1): 28-32.
CHEN Z.Research on the Development of Electrical Steel and 20-High Rolling Mill in China in the Decade of the New Era[J]. Electrical Steel, 2023, 5(1): 28-32.
[11] 李硕, 于洋, 宋浩源, 等. 冷轧薄窄规格低碳钢碎边浪板形问题研究[J]. 轧钢, 2024, 41(2): 69-77.
LI S, YU Y, SONG H Y, et al.Study on the Broken Edge Wave Problem of Cold Rolled Thin and Narrow Gauge Low Carbon Steel Strip[J]. Steel Rolling, 2024, 41(2): 69-77.
[12] 王彦菊, 门明良, 万敏, 等. 厚度和晶粒尺寸对高温合金带材起皱性能的影响[J]. 稀有金属材料与工程, 2022, 51(4): 1363-1370.
WANG Y J, MEN M L, WAN M, et al.Effect of Thickness and Grain Size on Wrinkling Properties of Superalloy Strip[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1363-1370.
[13] 孙荣生, 崔熙颖, 李学通, 等. 冷连轧过程中碎浪缺陷的有限元模拟[J]. 塑性工程学报, 2023, 30(5): 58-65.
SUN R S, CUI X Y, LI X T, et al.Finite Element Simulation of Crushed Wave Defects during Cold Continuous Rolling[J]. Journal of Plasticity Engineering, 2023, 30(5): 58-65.
[14] 周冠禹, 何安瑞, 刘超, 等. 20辊轧机轧制宽幅工业纯钛带的变形行为研究[J]. 稀有金属材料与工程, 2020, 49(7): 2333-2339.
ZHOU G Y, HE A R, LIU C, et al.Modeling and Simulation of Wide Commercial Pure Titanium Strip Rolling on Sendzimir 20-High Mill[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2333-2339.
[15] 孙建亮, 晏铭泽, 李明远, 等. 二十辊轧机支撑辊组变形及板形调控分析[J]. 钢铁, 2021, 56(12): 85-95.
SUN J L, YAN M Z, LI M Y, et al.Analysis on Flatness about Support Axle Group Deformation in 20-High Mill[J]. Iron & Steel, 2021, 56(12): 85-95.
[16] 杜凤山, 冯岩峰, 刘文文, 等. 板带精密轧制辊型电磁调控测量技术[J]. 钢铁, 2017, 52(11): 75-80.
DU F S, FENG Y F, LIU W W, et al.Measuring Technique for Roll Profile Electromagnetic Control in Precision Plate Rolling[J]. Iron & Steel, 2017, 52(11): 75-80.
[17] 石坤, 王兴, 郑岗, 等. 基于有限元和PSO-BP法的20辊轧机轧制板形预测[J]. 机床与液压, 2023, 51(4): 152-157.
SHI K, WANG X, ZHENG G, et al.Shape Prediction of 20-High Rolling Mill Based on Finite Element and PSO-BP Method[J]. Machine Tool & Hydraulics, 2023, 51(4): 152-157.
[18] 郭泽宇. 新型二十辊轧机板形调控模拟分析[D]. 秦皇岛: 燕山大学, 2017: 24-29.
GUO Z Y.Simulation Analysis of Shape Control of New 20-High Mill[D]. Qinhuangdao: Yanshan University, 2017: 24-29.
[19] YUAN Z W, XIAO H.Plate Shape Control Theory and Experiment for 20-High Mill[J]. Journal of Iron and Steel Research, International, 2015, 22(11): 996-1001.
[20] 王兴. 二十辊冷轧机板形影响因素研究[D]. 西安: 西安理工大学, 2021: 63-65.
WANG X.Study on Influencing Factors of Shape of Twenty-high Cold Rolling Mill[D]. Xi’an: Xi’an University of Technology, 2021: 63-65.
[21] 刘晓. 极薄带材适轧厚度理论及斜向交叉浪形屈曲变形研究[D]. 秦皇岛: 燕山大学, 2020: 14-15.
LIU X.Study on the Theory of Suitable Rolling Thickness of Ultra-thin Strip and the Buckling Deformation of Oblique Intersecting Waves[D]. Qinhuangdao: Yanshan University, 2020: 14-15.
[22] 宋蕾, 沈明钢, 杨利坡, 等. 横向厚差与宽厚比对冷轧带钢临界失稳板形的影响[J]. 塑性工程学报, 2015, 22(4): 54-60.
SONG L, SHEN M G, YANG L P, et al.Effect of the Lateral Thickness Difference and the Width-Thickness Ratio on the Critical Instability Shape of Cold Rolled Strip[J]. Journal of Plasticity Engineering, 2015, 22(4): 54-60.
[23] 杨利坡, 张海龙, 张永顺. 高端冷轧箔带形状/性能协同测控现状及趋势预测[J]. 金属学报, 2021, 57(3): 295-308.
YANG L P, ZHANG H L, ZHANG Y S.Present Analysis and Trend Prediction of Shape/Performance Collaborative Control for High-End Cold Rolling Foils[J]. Acta Metallurgica Sinica, 2021, 57(3): 295-308.
[24] 于少霞, 王麒, 邓想涛, 等. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
YU S X, WANG Q, DENG X T, et al.Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. Acta Metallurgica Sinica, 2023, 59(10): 1365-1375.
[25] YU S X, WANG Q, DENG X T, et al.Size Effect of Local Single-Crystal-Layered Ultrathin Nickel-Based Superalloy GH4145 Strip[J]. Materials Science and Engineering: A, 2022, 858: 144171.
[26] ZHU Q, LUAN D, ZHANG L F, et al.Size Effect on the Forming Limit of a Nickel-Based Superalloy Thin Sheet at the Mesoscopic Scale[J]. Journal of Materials Research and Technology, 2023, 26: 8889-8903.
[27] RAN R, WANG Y, ZHANG Y X, et al.Microstructure, Precipitates and Mechanical Properties of Inconel 718 Alloy Produced by Two-Stage Cold Rolling Method[J]. Materials Science and Engineering: A, 2020, 793: 139860.
[28] 孙衍乐. 大变形轧制纳米晶镍基合金组织及力学性能研究[D]. 上海: 上海交通大学, 2018: 40-42.
SUN Y L.Study on Microstructure and Mechanical Properties of Nanocrystalline Nickel-based Alloy Rolled by Large Deformation[D]. Shanghai: Shanghai Jiao Tong University, 2018: 40-42.
[29] 孔维俊, 丁雨田, 王兴茂, 等. 中温轧制对新型镍基高温合金微观组织和高温力学性能的影响[J]. 稀有金属材料与工程, 2023, 52(8): 2859-2868.
KONG W J, DING Y T, WANG X M, et al.Effect of Warm Rolling on Microstructure Evolution and High Temperature Mechanical Properties of a Novel Ni-Based Superalloy[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2859-2868.
[30] 李红宇, 刘杨, 薛晶晶, 等. 冷轧变形量对核电用GH4169合金组织和拉伸性能的影响[J]. 材料热处理学报, 2020, 41(10): 38-43.
LI H Y, LIU Y, XUE J J, et al.Effect of Cold-Rolling Deformation on Microstructure and Tensile Properties of GH4169 Alloy for Nuclear Power Plant[J]. Transactions of Materials and Heat Treatment, 2020, 41(10): 38-43.
[31] CUI J J, WANG H, YANG Z R, et al.Study on Grain Boundary Distribution and Formation Mechanism in GH3536 Superalloy Strip and Foil after Annealing Treatment[J]. Materials Characterization, 2022, 192: 112236.
[32] MEI Y P, LIU Y C, LIU C X, et al.Effects of Cold Rolling on the Precipitation Kinetics and the Morphology Evolution of Intermediate Phases in Inconel 718 Alloy[J]. Journal of Alloys and Compounds, 2015, 649: 949-960.
[33] XUE H, ZHAO J Q, LIU Y K, et al.δ-Phase Precipitation Regularity of Cold-Rolled Fine-Grained GH4169 Alloy Plate and Its Effect on Mechanical Properties[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3287-3295.
[34] 李旭云. 精密薄带轧后残余应力分布模拟及实验研究[D]. 太原: 太原科技大学, 2021: 65-67.
LI X Y.Simulation and Experimental Study on Residual Stress Distribution of Precision Thin Strip after Rolling[D]. Taiyuan: Taiyuan University of Science and Technology, 2021: 65-67.
[35] 齐海峰, 张晓峰, 唐伟, 等. 极薄板高速轧制热划伤缺陷控制技术[J]. 中国冶金, 2020, 30(1): 79-83.
QI H F, ZHANG X F, TANG W, et al.Control Technology of Hot Scratch Defect in Extremely Thin Plate High Speed Rolling[J]. China Metallurgy, 2020, 30(1): 79-83.
[36] 曲春涛, 杨庭松, 郑义, 等. 基于新型板形电磁调控轧机的张力机制影响[J]. 塑性工程学报, 2021, 28(6): 219-227.
QU C T, YANG T S, ZHENG Y, et al.Influence of Tension Mechanism Based on New-Type Strip Shape Electromagnetic Control Rolling Mill[J]. Journal of Plasticity Engineering, 2021, 28(6): 219-227.
[37] 李博, 张清东, 张晓峰. 平整轧制过程工艺参数对带钢残余应力场的影响[J]. 塑性工程学报, 2013, 20(5): 65-70.
LI B, ZHANG Q D, ZHANG X F.Research on the Effect of Process Parameters on the Residual Stress of Strip after Temper Rolling[J]. Journal of Plasticity Engineering, 2013, 20(5): 65-70.
[38] 任鹏帆, 王振华, 贾燚, 等. 机理和数据融合的304不锈钢极薄带轧制力模型[J]. 钢铁, 2024, 59(10): 64-76.
REN P F, WANG Z H, JIA Y, et al.Rolling Force Model for 304 Stainless Steel Ultra-Thin Strip Based on Mechanism and Data Fusion[J]. Iron & Steel, 2024, 59(10): 64-76.
[39] 崔熙颖. 薄板带精密轧制板形机理模型及多工序协同调控方法研究[D]. 秦皇岛: 燕山大学, 2024: 45-47.
CUI X Y.Study on Shape Mechanism Model and Multi-process Collaborative Control Method of Thin Strip Precision Rolling[D]. Qinhuangdao: Yanshan University, 2024: 45-47.
[40] 刘松, 李俊辉, 刘云飞, 等. 特种合金极薄带轧制工艺与技术装备的研制[J]. 机械工程学报, 2024, 60(4): 357-368.
LIU S, LI J H, LIU Y F, et al.Research on Rolling Process and Technical Equipment of Special Alloy Strip with Ultra-Thin Thickness[J]. Journal of Mechanical Engineering, 2024, 60(4): 357-368.
[41] 杨利坡, 于华鑫, 张永顺, 等. 冷轧带钢虚拟仪器板形测控系统及其应用[J]. 机械工程学报, 2018, 54(14): 1-7.
YANG L P, YU H X, ZHANG Y S, et al.Shape Detection and Control System of Cold Rolling Strip Based on the Virtual Instrument and Its Industrial Application[J]. Journal of Mechanical Engineering, 2018, 54(14): 1-7.
[42] 张殿华, 彭文, 孙杰, 等. 板带轧制过程中的智能化关键技术[J]. 钢铁研究学报, 2019, 31(2): 174-179.
ZHANG D H, PENG W, SUN J, et al.Key Intelligent Technologies of Steel Strip Rolling Process[J]. Journal of Iron and Steel Research, 2019, 31(2): 174-179.
[43] 兰箭, 钱东升, 邓加东, 等. 高性能环类零件绿色智能轧制的研究进展[J]. 机械工程学报, 2022, 58(20): 186-197.
LAN J, QIAN D S, DENG J D, et al.Development of Green and Intelligent Rolling for High Performance Ring Parts[J]. Journal of Mechanical Engineering, 2022, 58(20): 186-197.
[44] 张殿华, 丁成砚, 王云龙, 等. 板带轧制数字化技术进步与发展趋势[J]. 轧钢, 2024, 41(5): 51-65.
ZHANG D H, DING C Y, WANG Y L, et al.Developments and Prospects of Digital Technique in Strip Rolling Process[J]. Steel Rolling, 2024, 41(5): 51-65.
[45] 王业科. 我国冷轧技术的进步[J]. 轧钢, 2024, 41(5): 98-107.
WANG Y K.Progress of Cold Rolling Technology in China[J]. Steel Rolling, 2024, 41(5): 98-107.
[46] 谢霞, 乔军, 贺立红. 热轧奥氏体不锈钢无硝酸酸洗工艺机理分析[J]. 轧钢, 2020, 37(2): 64-68.
XIE X, QIAO J, HE L H.Analysis of Mechanism in Pickling Process without HNO3 for Hot Rolled Austenitic Stainless Steel[J]. Steel Rolling, 2020, 37(2): 64-68.
[47] 肖宏, 任忠凯, 刘晓. 极薄带最小可轧厚度新公式[C]// 第十一届中国钢铁年会论文集——S03.轧制与热处理. 北京, 2017: 587-592.
XIAO H, REN Z K, LIU X.A New Formula of the Minimum Thickness for Ultra-Thin Strip Rolling[C]// The 11th China Iron and Steel Annual Conference, Beijing, 2017: 587-592.
[48] REN Z K, XIAO H, LIU X, et al.Experimental and Theoretical Analysis of Roll Flattening in the Deformation Zone for Ultra-Thin Strip Rolling[J]. Ironmaking & Steelmaking, 2018, 45(9): 805-812.
[49] REN Z K, WANG T, FAN W W.Establishment of the Tension Stress Model Considering Metal Lateral Flow for Foil Rolling[J]. Meccanica, 2019, 54(1): 261-270.
[50] LIU X, XIAO H.Theoretical and Experimental Study on the Producible Rolling Thickness in Ultra-Thin Strip Rolling[J]. Journal of Materials Processing Technology, 2020, 278: 116537.
[51] XIAO H, REN Z K, LIU X.New Mechanism Describing the Limiting Producible Thickness in Ultra-Thin Strip Rolling[J]. International Journal of Mechanical Sciences, 2017, 133: 788-793.
[52] 刘相华, 宋孟, 孙祥坤, 等. 极薄带轧制研究与应用进展[J]. 机械工程学报, 2017, 53(10): 1-9.
LIU X H, SONG M, SUN X K, et al.Advances in Research and Application of Foil Rolling[J]. Journal of Mechanical Engineering, 2017, 53(10): 1-9.
[53] 李伟, 李松松, 于辉. 基于轧制力判定的薄带材极限可轧厚度理论研究[J]. 工程力学, 2023, 12(3): 1-9.
LI W, LI S S, YU H.Theoretical Study on Ultimate Rollable Thickness of Thin Strip Based on Rolling Force Determination[J]. China Industrial Economics, 2023, 12(3): 1-9.
[54] 任忠凯, 郭雄伟, 范婉婉, 等. 精密极薄带轧制理论研究进展及展望[J]. 机械工程学报, 2020, 56(12): 73-84.
REN Z K, GUO X W, FAN W W, et al.Research Progress and Prospects of Precision Ultra-Thin Strip Rolling Theory[J]. Journal of Mechanical Engineering, 2020, 56(12): 73-84.
[55] 徐星星, 魏立群, 付斌, 等. 1400 mm十二辊轧机轧制薄带的板凸度控制[J]. 塑性工程学报, 2020, 27(3): 115-121.
XU X X, WEI L Q, FU B, et al.Plate Crown Control of 1400 mm 12-High Mill Rolling Thin Strip[J]. Journal of Plasticity Engineering, 2020, 27(3): 115-121.
[56] YANG L, YU H, LI R, et al.Detection and Evaluation Mechanism of Cold Rolling Strip Edge Shape[J]. Ironmaking & Steelmaking, 2018, 45(5): 457-468.
[57] 任忠凯, 员征文, 肖宏, 等. 四辊轧机工作辊辊端压靠板形控制模型[J]. 燕山大学学报, 2016, 40(1): 39-44.
REN Z K, YUAN Z W, XIAO H, et al.Plate Shape Control of Work Roll Edge Contact for 4-High Mill[J]. Journal of Yanshan University, 2016, 40(1): 39-44.
[58] REN Z K, XIAO H, WANG T, et al.Plate Profile Control during Ultra-Thin Strip Rolling Utilizing Work Roll Edge Contact[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 41(1): 28.
[59] REN Z K, XIAO H, XIE H B, et al.Influence of Lateral Displacement on Strip Shape during Cold Rolling[J]. Journal of Iron and Steel Research International, 2018, 25(9): 892-900.
[60] 陈守东, 刘相华, 刘立忠, 等. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟[J]. 金属学报, 2016, 52(1): 120-128.
CHEN S D, LIU X H, LIU L Z, et al.Crystal Plasticity Finite Element Simulation of Slip and Deformation in Ultrathin Copper Strip Rolling[J]. Acta Metallurgica Sinica, 2016, 52(1): 120-128.
[61] CHEN J Q, HU X L, LIU X H.Softening Effect on Fracture Stress of Pure Copper Processed by Asynchronous Foil Rolling[J]. Materials, 2019, 12(14): 2319.
[62] ZHAO J W, HUO M S, MA X G, et al.Study on Edge Cracking of Copper Foils in Micro Rolling[J]. Materials Science and Engineering: A, 2019, 747: 53-62.
[63] SONG X, WANG L, LIU Y.A Review of the Strengthening-Toughening Behavior and Mechanisms of Advanced Structural Materials by Multifield Coupling Treatment[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(2): 185-199.
[64] HUANG R S, SUN Y A, XING L L, et al.Effect of Gradient Microstructure Pinned by δ Phase on Elevated Temperature Performances of GH4169[J]. Materials Science and Engineering: A, 2020, 774: 138913.
[65] JIANG W, XU P W, LI Y Y, et al.Effect of a Gradient Structure on the Mechanical Performance of Inconel 718 Ni-Based Superalloy at Elevated Temperatures[J]. Journal of Materials Research and Technology, 2023, 23: 2031-2042.
[66] YU W W, WU J, DENG Y D, et al.Surface Modification and Its Effect on Fatigue Performance of Nickel- Based Superalloy Treated by Ultrasonic Surface Rolling Process[J]. Materials Characterization, 2024, 210: 113782.
[67] YANG J, LIU D X, FAN K F, et al.Designing a Gradient Structure in a Ni-Based Superalloy to Improve Fretting Fatigue Resistance at Elevated Temperatures through an Ultrasonic Surface Rolling Process[J]. International Journal of Fatigue, 2023, 168: 107397.
[68] YANG J, LIU D X, REN Z C, et al.Grain Growth and Fatigue Behaviors of GH4169 Superalloy Subjected to Excessive Ultrasonic Surface Rolling Process[J]. Materials Science and Engineering: A, 2022, 839: 142875.

基金

重庆市技术创新与应用发展重点专项(CSTB2023TIAD-KXP0021); 国机集团科学技术研究院有限公司科研专项(SINOMAST-KYZX-2023-03); 中国机械工业集团有限公司科研专项(ZDZX2024-54); 重庆市北碚区科技成果转化与产业化专项(2024-01)

PDF(9516 KB)

Accesses

Citation

Detail

段落导航
相关文章

/