冷压烧结技术在电介质复合材料中的研究现状

王旭, 吴勇, 李江, 程载琦, 李重秀, 刘贲, 乔正阳

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 183-192.

PDF(16170 KB)
PDF(16170 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 183-192. DOI: 10.3969/j.issn.1674-6457.2025.07.020
复合材料成形

冷压烧结技术在电介质复合材料中的研究现状

  • 王旭1, 吴勇2, 李江3, 程载琦4, 李重秀4, 刘贲1, 乔正阳1,*
作者信息 +

Research Status of Cold Pressing Sintering Technique in Dielectric Composites

  • WANG Xu1, WU Yong2, LI Jiang3, CHENG Zaiqi4, LI Chongxiu4, LIU Ben1, QIAO Zhengyang1,*
Author information +
文章历史 +

摘要

随着现代科学技术的蓬勃发展,电介质复合材料在电子、储能、传感器等众多领域的应用需求正在不断增加,特别是在电容器等能源储存以及传感技术方面,其介电性能更是发挥着至关重要的作用。传统烧结技术在制备陶瓷材料时,通常需要高温处理,这样不仅能耗高,还可能导致材料的相变和晶粒过度生长。为了解决这些问题,冷压烧结技术应运而生。冷压烧结技术作为一种新兴的超低温烧结方法,不仅能够显著提升电介质复合材料的介电性能,还能保持高分子材料的柔韧性以及其他优良特性,这使得此类型复合材料在多种应用中展现出巨大的潜力。本文系统阐述了冷压烧结的基本原理,重点分析了其在低温下优化电介质复合材料时的介电性能机理,并且探讨了冷压烧结工艺如何改善复合材料的介电常数、击穿强度及热稳定性等重要性能。探讨了冷压烧结工艺在提升电介质复合材料介电性能方面的最新研究进展。最后,分析了冷压烧结工艺面临的挑战,并对其实际应用前景进行了展望。

Abstract

With the burgeoning advancement of modern technology, the demand for dielectric composites in electronics, energy storage, sensors, and other fields continues to rise. Their dielectric properties play a critical role, particularly in energy storage applications such as capacitors and sensing technologies. Traditional sintering techniques for fabricating ceramic materials typically require high-temperature processing, which not only consumes significant energy but may also induces detrimental phase transformation and excessive grain growth. To address these challenges, cold pressing sintering has emerged as a novel ultra-low-temperature processing method. This approach not only significantly enhances the dielectric property of composites but also preserves the flexibility and other advantageous properties of polymer matrices, thereby demonstrating substantial potential for diverse applications. In this review, the work systematically elucidates the fundamental principles of cold pressing sintering, with a focus on its mechanisms for optimizing dielectric properties (e.g., dielectric constant, breakdown strength, and thermal stability) at low temperature. It further examines recent advances in cold pressing sintering for enhancing dielectric properties and discusses the current challenges and future prospects for practical implementation.

关键词

电介质复合材料 / 冷压烧结工艺 / 介电性能 / 电容器 / 热稳定性

Key words

dielectric composites / cold pressing sintering process / dielectric properties / capacitors / thermal stability

引用本文

导出引用
王旭, 吴勇, 李江, 程载琦, 李重秀, 刘贲, 乔正阳. 冷压烧结技术在电介质复合材料中的研究现状[J]. 精密成形工程. 2025, 17(7): 183-192 https://doi.org/10.3969/j.issn.1674-6457.2025.07.020
WANG Xu, WU Yong, LI Jiang, CHENG Zaiqi, LI Chongxiu, LIU Ben, QIAO Zhengyang. Research Status of Cold Pressing Sintering Technique in Dielectric Composites[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 183-192 https://doi.org/10.3969/j.issn.1674-6457.2025.07.020
中图分类号: TB332   

参考文献

[1] HU X B, LAI Y Q, HU Y S, et al.Research on the Application of Polymer Materials in Contemporary Ceramic Art Creation[J]. Polymers, 2022, 14(3): 552.
[2] SAHU R, CHANDRASEKHAR M, GOYAL R K, et al.A Comparative Analysis of NBT Ceramics Sintered via Conventional and Microwave Methods[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(21): 1459.
[3] JABR A, JONES H N, ARGÜELLES A P, et al. Scaling up the Cold Sintering Process of Ceramics[J]. Journal of the European Ceramic Society, 2023, 43(12): 5319-5329.
[4] LIU A X.Discussion on the Use of Chromium Leaching Slag as Flux in Blast Furnace Ironmaking through Sintering and Cold Pressing[J] Metallurgical Environmental Protection, 2002, (06): 46-49.
[5] MORMENEO-SEGARRA A, FERRER-NICOMEDES S, VICENTE-AGUT N, et al.In Operando Characterization of the Ionic Conductivity Dependence on Liquid Transient Phase and Microstructure of Cold-Sintered Bi2O3-Doped Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolyte[J]. Ceramics International, 2023, 49(22): 36497-36506.
[6] GUO J, ZHAO X T, BEAUVOIR H D, et al.Recent Progress in Applications of the Cold Sintering Process for Ceramic-Polymer Composites[J]. Advanced Functional Materials, 2018, 28(39): 1801724.
[7] 张颖, 杨迪, 张军战, 等. 冷烧结工艺制备石榴石固态电解质及其性能[J]. 精细化工, 2020, 37(9): 1890-1895.
ZHANG Y, YANG D, ZHANG J Z, et al.Preparation and Properties of Garnet Solid-State Electrolyte via Cold Sintering Process[J]. Fine Chemicals, 2020, 37(9): 1890-1895.
[8] YU T, CHENG J, LI L, et al.Current Understanding and Applications of the Cold Sintering Process[J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 654-664.
[9] DURSUN S, TSUJI K, BANG S H, et al.A Route towards Fabrication of Functional Ceramic/Polymer Nanocomposite Devices Using the Cold Sintering Process[J]. ACS Applied Electronic Materials, 2020, 2(7): 1917-1924.
[10] 孙奕彬, 刘兵. 陶瓷冷烧结技术的研究现状及发展趋势[J]. 聊城大学学报(自然科学版), 2025, 38(3) 383-392.
SUN Y B, LIU B.Research Status and Development Trends of Ceramic Cold Sintering Technology[J]. Journal of Liaocheng University(Natural Science Edition), 2025, 38(3) 383-392.
[11] BASU B, BALANI K.Sintering of Ceramics. Advanced Structural Ceramics[M]. New Jersey: John Wiley & Sons, 2011: 76-104.
[12] YANG X W, GUO X Y, WANG Y N.Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It[J]. Sustainability, 2023, 15(9): 7528.
[13] BIESUZ M, DE BEAUVOIR T H, DE BONA E, et al. Ultrafast High-Temperature Sintering (UHS) vs. Conventional Sintering of 3YSZ: Microstructure and Properties[J]. Journal of the European Ceramic Society, 2024, 44(7): 4741-4750.
[14] HONG W B, LI L, YAN H, et al.Cold Sintering and Microwave Dielectric Properties of Dense HBO2-Ⅱ Ceramics[J]. Journal of the American Ceramic Society, 2019, 102(10): 5934-5940.
[15] VAKIFAHMETOGLU C, KARACASULU L.Cold Sintering of Ceramics and Glasses: A Review[J]. Current Opinion in Solid State and Materials Science, 2020, 24(1): 100807.
[16] CHOUK W, MOUALHI K, OTHMANI A, et al.Study of Phase Transition Behavior and High Dielectric Properties in Formula Omitted ceramics[J]. Materials Chemistry and Physics 2024, 314: 128795.
[17] HONG J Y, BAE S, JUNG Y, et al.The Connectivity of a Ceramic Component and Its Effect on Dielectric and Thermal Properties in Low-Temperature Processed Li2MoO4-Polytetrafluorethylene Composites[J]. Journal of Alloys and Compounds, 2024, 984: 173892.
[18] 韦婷婷, 徐华蕊, 朱归胜, 等. BaTiO3陶瓷的低温冷烧结制备及性能研究[J]. 无机材料学报, 2022, 37(8): 903-910.
WEI T T, XU H R, ZHU G S, et al.Preparation and Properties of BaTiO3 Ceramics by Low Temperature Cold Sintering[J]. Journal of Inorganic Materials, 2022, 37(8): 903-910.
[19] GUO X, MAIER J.Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis[J]. Journal of the Electrochemical Society, 2001, 148(3): E121.
[20] LIAN H L, HE Y R, LIANG X J, et al.BN6BT Ceramics via Cold-Sintering with Annealing: Effects of Grain Size of Precursor Powders and Annealing Temperature[J]. Journal of the American Ceramic Society, 2024, 107(5): 3194-3208.
[21] VILESH V L, SANTHA N, SUBODH G.Influence of Li2MoO4 and Polytetrafluoroethylene Addition on the Cold Sintering Process and Dielectric Properties of BaBiLiTeO6 Ceramics[J]. Ceramics International, 2021, 47(21): 30756-30763.
[22] HOSHINA T, HATTA S, TAKEDA H, et al. Grain Size Effect on Piezoelectric Properties of BaTiO3 Ceramics[J]. Japanese Journal of Applied Physics, 2018, 57(9): 0902BB.
[23] 欧阳瑞丰, 施玮, 陈云霞, 等. 冷烧结技术在陶瓷材料制备中的应用[J]. 硅酸盐学报, 2023, 51(8): 2108-18.
OUYANG R F, SHI W, CHEN Y X, et al.Application of Cold Sintering Technology in The Preparation of Ceramic Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2108-2118.
[24] 邓维. PVDF基聚合物--陶瓷纳米复合电介质材料中的结构和性能关系研究[D]. 西安: 西安理工大学, 2022: 1-3.
DENG W.Research on The Relationship Between Structure and Properties in PVDF-Based Polymer Ceramic Nanocomposite Dielectric Materials[D]. Xi'an: Xi'an University of Technology, 2022: 1-3.
[25] 林之鸣, 包志伟, 李泽锟, 等. PVDF基储能电介质的设计及性能调控相关进展[J]. 功能高分子学报, 2024, 37(3): 262-276.
LIN Z M, BAO Z W, LI Z K, et al.Progress on Material Design and Performance Regulation of PVDF-Based Energy Storage Dielectrics[J]. Journal of Functional Polymers, 2024, 37(3): 262-276.
[26] 李琳, 周振功, 张明福, 等.PST-PT/PVDF复合材料的制备及介电性能[J].复合材料学报, 2004, 21(3): 69-72.
LI L, ZHOU Z G, ZHANG M F, et al.Preparation and Dielectric Properties of PST-PT/PVDF Composites[J]. Journal of Composite Materials, 2004, 21(3): 69-72.
[27] 黄鸿. PVDF/陶瓷复合材料介电性能研究[D]. 成都: 电子科技大学, 2015.
HUANG H.Study on Dielectric Property of PVDF/Ceramic Composites[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
[28] EGOROV S V, EREMEEV A G, KHOLOPTSEV V V, et al.Rapid 24 GHz Microwave Sintering of Alumina Yttria-Stabilized Zirconia Ceramic Composites[J]. Ceramics International, 2024, 50(22): 45155-45164.
[29] 康晟淋, 赵学童, 张洁心, 等. 冷烧结技术的研究进展及其在电工领域的潜在应用[J]. 电工技术学报, 2022, 37(5): 1098-1114.
KANG S L, ZHAO X T, ZHANG J X, et al.Recent Research Progress of Cold Sintering Process and Its Potential Application in Electrotechnical Fields[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1098-1114.
[30] 李红叶. 片状纳米粉体制备及其提高PEI基介电复合材料高温储能性能研究[D]. 北京: 北京化工大学, 2024.
LI H Y.Preparation of Flaky Nano-powders and Research on Improving the High-temperature Energy Storage Performance of PEI-based Dielectric Composites[D]. Beijing: Beijing University of Chemical Technology, 2024.
[31] GUO J, PFEIFFENBERGER N, BEESE A, et al.Cold Sintering Na2Mo2O7 Ceramic with Poly(ether imide) (PEI) Polymer to Realize High-Performance Composites and Integrated Multilayer Circuits[J]. ACS Applied Nano Materials, 2018, 1(8): 3837-3844.
[32] ZHAO X T, GUO J, WANG K, et al.Introducing a ZnO-PTFE (Polymer) Nanocomposite Varistor via the Cold Sintering Process[J]. Advanced Engineering Materials, 2018, 20(7): 1700902.
[33] BEAUVOIR D H, TSUJI K, ZHAO X T, et al.Cold Sintering of ZnO-PTFE: Utilizing Polymer Phase to Promote Ceramic Anisotropic Grain Growth[J]. Acta Materialia, 2020, 186: 511-516.
[34] GAI K, WANG Q, LI J Y, et al.Studies on the Crystallization Behavior of Al2O3-HfO2 Ceramic Fibers Prepared by Melt-Spinning of Polymer Precursors[J]. Journal of the European Ceramic Society, 2023, 43(13): 5587-5595.
[35] RANDALL C A, GUO J, BAKER A L, et al. Cold-Sintered Ceramics and Composite Materials: China, CN108137417B[P].2021-06-25
[36] ASHUTOSH K, GOLLA B R.High Dielectric Al2O3- (20-30wt%) HDPE Composites Processed via Cold Sintering[J]. Ceramics International, 2023, 49(19): 31405-31411.
[37] 侯欣源, 肖永健, 杨洋, 等. 氧化锌-聚四氟乙烯基复合陶瓷材料的冷烧结及电气性能研究[J]. 电工技术学报, 2025, 40(11): 3680-3690.
HOU X Y, XIAO Y J, YANG Y, et al.Study on Electrical Properties of Zinc Oxide-Polytetrafluoroethylene Based Composite Ceramic Materials by Cold Sintering Process[J]. Transactions of China Electrotechnical Society, 2025, 40(11): 3680-3690.
[38] BHOOTPUR N, BROUWER H, TANG Y L.Influence of Bismuth Oxide as a Sintering Aid on the Densification of Cold Sintering of Zirconia[J]. Ceramics International, 2023, 49(21): 33495-33499.
[39] EVANGELINE T G, ANNAMALAI A R.Densification of Ceramics and Ceramic-Based Composites Using Ultralow Temperature Sintering (Cold Sintering): A Comprehensive Review[J]. International Journal of Applied Ceramic Technology, 2025, 22(2): e14996.
[40] GUO N, SHEN H Z, SHEN P.One-Step Synthesis and Densification of BaTiO3 by Reactive Cold Sintering[J]. Scripta Materialia, 2022, 213: 114628.
[41] KIM H, CHOI S, PECK D H, et al.Influence of the Cold Sintering Process and Post Annealing on the Microstructure and Li-Ion Conductivity of LiTa2PO8 Solid Electrolyte[J]. Ceramics International, 2023, 49(6): 8718-8724.
[42] LYU X G, SEO Y, HAN D H, et al.Porous Lithium Disilicate Glass-Ceramics Prepared by Cold Sintering Process Associated with Post-Annealing Technique[J]. Materials, 2024, 17(2): 381.
[43] HAN J Y, CHI M J, YANG L, et al.Cold Sintering Isomagnetic Dielectric NaCl-Nickel Zinc Ferrite Composite Ceramics[J]. Crystals, 2023, 13(7): 1140.
[44] MORMENEO-SEGARRA A, FERRER-NICOMEDES S, VICENTE-AGUT N, et al.The Role of the LATP Particle Size as a Cornerstone of the Cold Sintering Process[J]. Journal of the European Ceramic Society, 2024, 44(8): 5105-5114.
[45] MARIA J P, KANG X Y, FLOYD R D, et al.Cold Sintering: Current Status and Prospects[J]. Journal of Materials Research, 2017, 32(17): 3205-3218.
[46] BANG S H, TSUJI K, NDAYISHIMIYE A, et al.Toward a Size Scale-up Cold Sintering Process at Reduced Uniaxial Pressure[J]. Journal of the American Ceramic Society, 2020, 103(4): 2322-2327.
[47] LI X Y, LI L, SI M M, et al.Cold Sintered BaTiO3- Poly(ether imide) Nanocomposites with Superior Comprehensive Performances[J]. Journal of Advanced Ceramics, 2024, 13(9): 1453-1460.
[48] 刘兵, 黄玉辉, 丁一. 基于冷烧结技术制备的高透光率透明陶瓷及其制备方法: 中国, 202110392390[P].2022-10-25.
LIU B, HUANG Y H, DING Y. High Light Transmittance Transparent Ceramics Prepared by Cold Sintering Technology and Preparation Method Thereof: China, 202110392390[P].2022-10-25.
[49] SHI J X, CHEN H L, JIA S H, et al.Rapid and Low- Cost Fabrication of Thermoelectric Composite Using Low-Pressure Cold Pressing and Thermocuring Methods[J]. Materials Letters, 2018, 212: 299-302.
[50] TAKAGI T.A Concept of Intelligent Materials[J]. Journal of Intelligent Material Systems and Structures, 1990, 1(2): 149-156.
[51] WANG D W, ZHOU D, SONG K X, et al.Cold-Sintered C0G Multilayer Ceramic Capacitors[J]. Advanced Electronic Materials, 2019, 5(7): 1900025.
[52] LI Y C, ZHAO X T, KANG S L, et al.Recent Progress of Cold Sintering Process on Functional Ceramic Materials[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(31): 2105.
[53] 段培开, 张广明, 付志国, 等. 3D打印陶瓷电路板的研究进展与未来展望[J]. 精密成形工程, 2024, 16(12): 54-67.
DUAN P K, ZHANG G M, FU Z G, et al.Research Progress and Future Prospects of 3D Printing Ceramic Circuit Boards[J]. Journal of Netshape Forming Engineering, 2024, 16(12): 54-67.
[54] 冯静静, 章游然, 马名生, 等. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136.
FENG J J, ZHANG Y R, MA M S, et al.Current Status and Development Trend of Cold Sintering Process[J]. Journal of Inorganic Materials, 2023, 38(2): 125-136.

PDF(16170 KB)

Accesses

Citation

Detail

段落导航
相关文章

/