双挤出头3D打印制备石墨烯/SiC复合材料的水凝胶支撑结构

吴雪雪, 刘洪军, 李亚军, 唐润, YatskovskyiDmytroa, 李亚敏

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 164-174.

PDF(22040 KB)
PDF(22040 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 164-174. DOI: 10.3969/j.issn.1674-6457.2025.07.018
增材制造

双挤出头3D打印制备石墨烯/SiC复合材料的水凝胶支撑结构

  • 吴雪雪a, 刘洪军a,b,*, 李亚军a, 唐润a, YatskovskyiDmytroa, 李亚敏a,b
作者信息 +

Structure of Hydrogel Support for Graphene/SiC Composite Prepared by Dual Extruder 3D Printer

  • WU Xuexuea, LIU Hongjuna,b,*, LI Yajuna, TANG Runa, YATSKOVSKYI Dmytroa, LI Yamina,b
Author information +
文章历史 +

摘要

目的 为双挤出头3D打印制备石墨烯/SiC复合材料提供水凝胶支撑结构设计依据和参考。方法 制备淀粉基水凝胶并分析其流变性、烧蚀性、挤出丝成形性和负载能力,采用3D打印技术制备网格试样并对试样尺寸进行测量,分析不同结构模式、不同打印方向和不同填充率对水凝胶支撑成形精度的影响,并对支撑复合材料间的匹配跨距进行了优化,最后将所得优化参数应用于水凝胶中并制备了复杂结构零件。结果 当石墨烯/SiC复合材料的倾角低于70°时,楔形零件发生明显变形,水凝胶呈现明显的剪切稀化特性,800 ℃烧蚀后几乎无残留,挤出丝完整均匀,可独立负载8 mm高的复合材料;不同结构模式按支撑高度偏差由小到大的顺序依次为直线、蜂窝、波浪、三角。当支撑打印方向为0°时,高度偏差最小((+0.08±0.23) mm),当支撑打印方向为30°时,偏差最大且误差线范围最宽((+0.48±0.3) mm);填充率对高度偏差的影响随着填充率的增大呈现出先降低后升高的趋势,当填充率为50%时,水凝胶支撑高度偏差最小;石墨烯/SiC复合材料和水凝胶支撑间应有一定跨距,但当跨距超过1 mm时,悬空位置明显变形;零件试制结果证明,优化的水凝胶支撑结构可用于制备复杂结构石墨烯/SiC复合材料。结论 水凝胶成本低、挤出成形好、烧结残余少、去除工艺简单,具备一定的负载能力,可以作为双挤出头3D打印石墨烯/SiC复合材料的支撑材料;且优化后的水凝胶支撑结构参数为直线模式、打印方向为0°、填充率为50%,2种材料的匹配跨距为1 mm。

Abstract

The work aims to provide reference for designing the structure of hydrogel support for preparation of graphene/SiC composite by dual extruder 3D printer. Firstly, the starch-based hydrogel was prepared and its rheological properties, ablative properties, formability of extruded filaments and load capacity were analyzed. Then, the effects of structural pattern, printing direction and filling ratio on the accuracy of hydrogel support were investigated through the printing of 3D grid samples, and the matching span between support composites was optimized. Finally, the optimized parameters were applied to hydrogels and parts with complex structures were prepared. When the inclination angle of graphene/SiC composites was lower than 70°, the wedge-shaped parts were obviously deformed, and the hydrogel showed obvious shear thinning characteristics. After ablation at 800 ℃, there was almost no residue, and the extruded filaments were complete and uniform, which could independently load 8 mm high composites. Different structural patterns were rectilinear, honeycomb, wiggle and triangular in order of support height deviation from small to large. The deviation in the height direction for the rectilinear pattern was the smallest ((+0.08±0.23) mm) at printing direction 0° and the largest at printing direction 30°, and the range of error line was widest ((+0.48±0.3) mm). With the increase of filling ratio, the effect of filling ratio on height deviation first decreased and then increased. When the filling ratio was 50%, the height deviation of hydrogel support was the smallest. There should be a certain span between graphene/SiC composite and hydrogel support, but when the span exceeded 1 mm, the suspended position was obviously deformed. The trial-production results of parts showed that the optimized hydrogel support structure could be used to prepare graphene/SiC composites with complex structures. Hydrogel has low cost, good extrusion forming, less sintering residue, simple removal process and certain load capacity, and can be used as a support material for preparation of graphene/SiC composites by dual extruder 3D printer. The optimized parameters of hydrogel support structure are linear mode, printing direction 0°, filling ratio of 50%, and matching span of the two materials of 1 mm.

关键词

双挤出头3D打印 / 石墨烯/SiC复合材料 / 水凝胶 / 支撑结构 / 浆料挤出

Key words

dual extruder 3D printer / graphene/SiC composite / hydrogel / support structure / slurry extrusion

引用本文

导出引用
吴雪雪, 刘洪军, 李亚军, 唐润, YatskovskyiDmytroa, 李亚敏. 双挤出头3D打印制备石墨烯/SiC复合材料的水凝胶支撑结构[J]. 精密成形工程. 2025, 17(7): 164-174 https://doi.org/10.3969/j.issn.1674-6457.2025.07.018
WU Xuexue, LIU Hongjun, LI Yajun, TANG Run, YATSKOVSKYI Dmytro, LI Yamin. Structure of Hydrogel Support for Graphene/SiC Composite Prepared by Dual Extruder 3D Printer[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 164-174 https://doi.org/10.3969/j.issn.1674-6457.2025.07.018
中图分类号: TB332   

参考文献

[1] 杨彦安, 李鹤, 穆保霞. 陶瓷3D打印技术研究进展[J]. 硅酸盐通报, 2024, 43(5): 1600-1614.
YANG Y A, LI H, MU B X.Research Progress of Ceramic 3D Printing Technology[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1600-1614.
[2] BELMONTE M, NISTAL A, BOUTBIEN P, et al.Toughened and Strengthened Silicon Carbide Ceramics by Adding Graphene-Based Fillers[J]. Scripta Materialia, 2016, 113: 127-130.
[3] SEDLÁK R, KOVALĿÍKOVÁ A, GIRMAN V, et al. Fracture Characteristics of SiC/Graphene Platelet Composites[J]. Journal of the European Ceramic Society, 2017, 37(14): 4307-4314.
[4] BARFMAL M, MONTAZERI A.MD-Based Design of SiC/Graphene Nanocomposites towards Better Mechanical Performance[J]. Ceramics International, 2017, 43(18): 17167-17173.
[5] KOHESTANIAN M, SOHBATZADEH Z, REZAEE S.Mechanical Properties of Continuous Fiber Composites of Cubic Silicon Carbide (3C-SiC)/Different Types of Carbon Nanotubes (SWCNTS, RSWCNTS, and MWCNTS): A Molecular Dynamics Simulation[J]. Materials Today Communications, 2020, 23: 100922.
[6] YOU X, YANG J S, HUANG K, et al.Multifunctional Silicon Carbide Matrix Composites Optimized by Three-Dimensional Graphene Scaffolds[J]. Carbon, 2019, 155: 215-222.
[7] MIRANZO P, RAMÍREZ C, ROMÁN-MANSO B, et al. In Situ Processing of Electrically Conducting Graphene/ SiC Nanocomposites[J]. Journal of the European Ceramic Society, 2013, 33(10): 1665-1674.
[8] 张心培. 石墨烯增强碳化硅复合材料制备和摩擦学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 9-12.
ZHANG X P.Preparation and Tribological Properties of Graphene Reinforced Silicon Carbide Composites[D]. Harbin: Harbin Institute of Technology, 2018: 9-12.
[9] 徐彬桓, 林文松, 傅肃嘉, 等. 石墨烯添加量对无压烧结石墨烯/碳化硅陶瓷复合材料性能的影响[J]. 机械工程材料, 2018, 42(8): 29-32.
XU B H, LIN W S, FU S J, et al.Effect of Graphene Addition Amount on Properties of Pressureless Sintered Graphene/Silicon Carbide Ceramic Composite[J]. Materials for Mechanical Engineering, 2018, 42(8): 29-32.
[10] 杨金山, 黄凯, 游潇, 等. 3D打印三维石墨烯及其高性能陶瓷基复合材料[J]. 中国材料进展, 2018, 37(8): 590-596.
YANG J S, HUANG K, YOU X, et al.Three-Dimensional Graphene by 3D Printing and Related Advanced Ceramic Matrix Composites[J]. Materials China, 2018, 37(8): 590-596.
[11] 王文禹. 3D打印网络结构石墨烯/SiC的成形性和力学性能研究[D]. 兰州: 兰州理工大学, 2023: 22-40.
WANG W Y.Study on Formability and Mechanical Properties of Graphene/SiC with 3D Printing Network Structure[D]. Lanzhou: Lanzhou University of Technology, 2023: 22-40.
[12] QIAN L, YANG L, LI G J, et al.Effect of Nano-TiO2 on Properties of 3mol% Yttria-Stabilized Zirconia Ceramic via Layered Extrusion Forming[J]. Journal of the European Ceramic Society, 2020, 40(13): 4539-4546.
[13] 彭子伟, 王寅成, 杨力, 等. 三头挤出成形氧化铝基陶瓷的精度研究[J]. 中国机械工程, 2024, 35(3): 481-486.
PENG Z W, WANG Y C, YANG L, et al.Study on Accuracy of Alumina-Based Ceramics Formed by Three-Head Extrusion[J]. China Mechanical Engineering, 2024, 35(3): 481-486.
[14] ROMÁN-MANSO B, FIGUEIREDO F M, ACHIAGA B, et al. Electrically Functional 3D-Architectured Graphene/ SiC Composites[J]. Carbon, 2016, 100: 318-328.
[15] ROMÁN-MANSO B, MOYANO J J, PÉREZ-COLL D, et al. Polymer-Derived Ceramic/Graphene Oxide Architected Composite with High Electrical Conductivity and Enhanced Thermal Resistance[J]. Journal of the European Ceramic Society, 2018, 38(5): 2265-2271.
[16] PIERIN G, GROTTA C, COLOMBO P, et al.Direct Ink Writing of Micrometric SiOC Ceramic Structures Using a Preceramic Polymer[J]. Journal of the European Ceramic Society, 2016, 36(7): 1589-1594.
[17] 李关晋. 分层挤出成形悬空构件支撑材料及精度研究[D]. 武汉: 华中科技大学, 2020: 16-64.
LI G J.Research on Support Materials and Precision of Suspended Components Formed by Layered Extrusion[D]. Wuhan: Huazhong University of Science and Technology, 2020: 16-64.
[18] LI W B, ARMANI A, MCMILLEN D, et al.Additive Manufacturing of Zirconia Parts with Organic Sacrificial Supports[J]. International Journal of Applied Ceramic Technology, 2020, 17(4): 1544-1553.
[19] LI W B, GHAZANFARI A, MCMILLEN D, et al.Fabricating Ceramic Components with Water Dissolvable Support Structures by the Ceramic On-Demand Extrusion Process[J]. CIRP Annals, 2017, 66(1): 225-228.
[20] MARTÍNEZ-VÁZQUEZ F J, PAJARES A, MIRANDA P. A Simple Graphite-Based Support Material for Robocasting of Ceramic Parts[J]. Journal of the European Ceramic Society, 2018, 38(4): 2247-2250.
[21] YANG L, TANG S Y, LI G J, et al.Layered Extrusion Forming of Complex Ceramic Structures Using Starch as Removable Support[J]. Ceramics International, 2019, 45(17): 21843-21850.
[22] LEU M C, GARCIA D A.Development of Freeze-Form Extrusion Fabrication with Use of Sacrificial Material[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061014.
[23] 蔺代发. 双挤出头浆料挤出冷冻3D打印装置的开发和实验研究[D]. 兰州: 兰州理工大学, 2023: 18-40.
LIN D F.Development and Experimental Study of 3D Printing Device for Slurry Extrusion and Freezing with Double Extrusion Heads[D]. Lanzhou: Lanzhou University of Technology, 2023: 18-40.
[24] 孔劲松, 孙文彬, 周婧, 等. 微流挤出成形工艺挤出胀大机理研究[J]. 机械设计与制造, 2022(5): 132-137.
KONG J S, SUN W B, ZHOU J, et al.Study on Extrusion Swelling Mechanism of Micro-Flow Extrusion Forming Process[J]. Machinery Design & Manufacture, 2022(5): 132-137.
[25] 于小健, 纪倩, 卢莉璟, 等. 基于成本和性能的3D打印填充模式实验研究[J]. 实验技术与管理, 2023, 40(2): 20-25.
YU X J, JI Q, LU L J, et al.Experimental Research on Infill Pattern of 3D Printing Based on Costs and Performance[J]. Experimental Technology and Management, 2023, 40(2): 20-25.
[26] 展新新, 曹露露, 项东, 等. 成型方向对3D打印口腔义齿基托树脂材料物理性能及力学性能的影响[J]. 北京大学学报(医学版), 2024, 56(2): 345-351.
ZHAN X X, CAO L L, XIANG D, et al.Effect of Printing Orientation on Physical and Mechanical Properties of 3D Printing Prosthodontic Base Resin Materials[J]. Journal of Peking University (Health Sciences), 2024, 56(2): 345-351.
[27] 刘家利, 索海瑞, 杨翰, 等. 填充结构对3D打印聚己内酯支架力学性能的影响[J]. 中国组织工程研究, 2022, 26(16): 2492-2497.
LIU J L, SUO H R, YANG H, et al.Influence of Lay- down Angles on Mechanical Properties of Three-Dimensional Printed Polycaprolactone Scaffolds[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(16): 2492-2497.
[28] 穆英朋, 刘富初, 张驰, 等. 水溶性氧化钙陶瓷型芯的挤出式3D打印参数优化与表面精度控制研究[J]. 机械工程学报, 2024, 60(1): 170-178.
MU Y P, LIU F C, ZHANG C, et al.Parameter Optimization and Surface Accuracy Control of Water Soluble Calcia Ceramic Core Prepared by Extrusion 3D Printing Technology[J]. Journal of Mechanical Engineering, 2024, 60(1): 170-178.
[29] JAYASHURIYA M, GAUTAM S, ARAVINTH A N, et al.Studies on the Effect of Part Geometry and Process Parameter on the Dimensional Deviation of Additive Manufactured Part Using ABS Material[J]. Progress in Additive Manufacturing, 2022, 7(6): 1183-1193.
[30] FERNANDEZ-VICENTE M, CALLE W, FERRANDIZ S, et al.Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing[J]. 3D Printing and Additive Manufacturing, 2016, 3(3): 183-192.
[31] 刘娇, 刘洪军, Yatskovskyi Dmytro, 等. 填充密度和轮廓层数对浆料挤出3D打印型壳性能的影响[J]. 精密成形工程, 2024, 16(9): 181-189.
LIU J, LIU H J, DMYTRO Y, et al.Effect of Infill Density and Shell Layer Number on Properties of Casting Shell Mould Prepared by Slurry Extrusion-Based 3D Printing[J]. Journal of Netshape Forming Engineering, 2024, 16(9): 181-189.

基金

国家自然科学基金(52062029)

PDF(22040 KB)

Accesses

Citation

Detail

段落导航
相关文章

/