Fe-20Cr-5Al合金选区激光熔化增材制造工艺、热处理及性能研究

倪小南, 明亮, 胡子健, 杨温鑫, 王安森, 邓欣

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 153-163.

PDF(11934 KB)
PDF(11934 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 153-163. DOI: 10.3969/j.issn.1674-6457.2025.07.017
增材制造

Fe-20Cr-5Al合金选区激光熔化增材制造工艺、热处理及性能研究

  • 倪小南1, 明亮1, 胡子健1, 杨温鑫1, 王安森1, 邓欣1,2,*
作者信息 +

Selective Laser Melting Additive Manufacturing, Heat Treatment and Property Study of Fe-20Cr-5Al Alloy

  • NI Xiaonan1, MING Liang1, HU Zijian1, YANG Wenxin1, WANG Ansen1, DENG Xin1,2,*
Author information +
文章历史 +

摘要

目的 探索FeCrAl合金在增材制造中的应用潜力,通过选区激光熔化(SLM)技术优化其工艺参数,以改善合金的微观结构、力学性能及抗氧化特性,为工程应用提供理论支持和实践指导。方法 采用响应曲面方法(RSM)对SLM工艺参数进行优化,以确定最佳工艺条件,采用SLM技术对Fe-20Cr-5Al合金进行打印。结果 在优化的工艺条件下,SLM打印的Fe-20Cr-5Al合金的相对密度达到了98.6%。未经热处理的合金抗拉强度为824.8 MPa,延伸率为12.3%;热处理后,抗拉强度略有降低,但延伸率提升至20.5%。此外,该合金在800 ℃条件下展现出完全的抗氧化性,在1 000 ℃下的氧化速率为0.042 g/(m²·h),且在氧化时间不超过80 h的情况下,仍保持良好的抗氧化性能。结论 通过优化SLM工艺参数,为FeCrAl合金在增材制造中的应用提供了重要的理论依据和实践指导,展示了该合金在高温环境下的优越性能。

Abstract

The work aims to explore the application potential of FeCrAl alloys in additive manufacturing, particularly through optimizing process parameters with Selective Laser Melting (SLM) technology, in order to improve the microstructure, mechanical properties, and oxidation resistance of the alloy, thereby providing theoretical support and practical guidance for engineering applications. Based on the Response Surface Methodology (RSM), the SLM process parameters were optimized to determine the best processing conditions, and the Fe-20Cr-5Al alloy was printed with SLM technology. Under the optimized processing conditions, the relative density of the Fe-20Cr-5Al alloy printed by SLM reached 98.6%. The as-printed alloy exhibited a tensile strength of 824.8 MPa and an elongation of 12.3%. After heat treatment, the tensile strength slightly decreased, but the elongation increased to 20.5%. Furthermore, the alloy demonstrated complete oxidation resistance at 800 ℃, with an oxidation rate of 0.042 g/(m²·h) at 1 000 ℃, and maintained good oxidation resistance even after 80 hours of oxidation. Through the optimization of SLM process parameters, this study provides important theoretical and practical guidance for the application of FeCrAl alloys in additive manufacturing, demonstrating the superior performance of the alloy in high-temperature environments and its promising prospects for engineering applications.

关键词

Fe-20Cr-5Al合金 / 选区激光熔化 / 响应曲面法 / 力学性能 / 抗氧化性

Key words

Fe-20Cr-5Al alloy / selective laser melting / response surface method / mechanical properties / oxidation resistance

引用本文

导出引用
倪小南, 明亮, 胡子健, 杨温鑫, 王安森, 邓欣. Fe-20Cr-5Al合金选区激光熔化增材制造工艺、热处理及性能研究[J]. 精密成形工程. 2025, 17(7): 153-163 https://doi.org/10.3969/j.issn.1674-6457.2025.07.017
NI Xiaonan, MING Liang, HU Zijian, YANG Wenxin, WANG Ansen, DENG Xin. Selective Laser Melting Additive Manufacturing, Heat Treatment and Property Study of Fe-20Cr-5Al Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 153-163 https://doi.org/10.3969/j.issn.1674-6457.2025.07.017
中图分类号: TN146.2   

参考文献

[1] JIA H L, SUN H, WANG H Z, et al.Scanning Strategy in Selective Laser Melting (SLM): A Review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9): 2413-2435.
[2] LI N, LIU W, WANG Y, et al.Laser Additive Manufacturing on Metal Matrix Composites: A Review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 38.
[3] 陈理燃. 金属增材制造技术在航空零部件应用与发展研究[J]. 冶金与材料, 2024, 16(5): 82-84.
CHEN L R.Research on Application and Development of Metal Additive Manufacturing Technology in Aviation Parts[J]. Metallurgy and Materials, 2024, 16(5): 82-84.
[4] XU Y S, QIU L, YUAN S F, et al.Research on Shape Memory Alloy Honeycomb Structures Fabricated by Selective Laser Melting Additive Manufacturing[J]. Optics & Laser Technology, 2022, 152: 108160.
[5] XUE H, LIU C, SONG Y, et al.Additive Manufacturing of Nano-W Composite High Nb-TiAl Alloys Fabricated via Selective Laser Melting[J]. Materials Letters, 2023, 347: 134569.
[6] KLADOVASILAKIS N, CHARALAMPOUS P, TSONGAS K, et al.Influence of Selective Laser Melting Additive Manufacturing Parameters in Inconel 718 Superalloy[J]. Materials, 2022, 15(4): 1362.
[7] 张大俊, 宋黎明, 李恒, 等. 激光功率对PLC控制的SLM成形SiC增强铝基复合材料组织与性能的影响[J]. 精密成形工程, 2024, 16(6): 92-99.
ZHANG D J, SONG L M, LI H, et al.Effect of Laser Power on the Microstructure and Properties of SiC Reinforced Aluminum Matrix Composites Formed by SLM Based on PLC Control[J]. Journal of Netshape Forming Engineering, 2024, 16(6): 92-99.
[8] 吕源, 李涛, 刘捷, 等. 选区激光熔化成形高氮不锈钢组织与力学性能研究[J]. 中国激光, 2022, 49(22): 2202021.
LYU Y, LI T, LIU J, et al.Microstructure and Mechanical Properties of High-Nitrogen Stainless Steel Manufactured by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(22): 2202021.
[9] ZHOU J T, HAN X, LI H, et al.Investigation of Layer-by-Layer Laser Remelting to Improve Surface Quality, Microstructure, and Mechanical Properties of Laser Powder Bed Fused AlSi10Mg Alloy[J]. Materials & Design, 2021, 210: 110092.
[10] 荣远卓, 凌志成, 杨寅晨, 等. Ti6Al4V粉末选区激光熔化的基础实验研究[J]. 应用激光, 2021, 41(1): 1.
RONG Y Z, LING Z C, YANG Y C, et al.Experimental Study on Selective Laser Melting of Ti6Al4V Powder[J]. Applied Laser, 2021, 41(1): 1.
[11] BIAN P Y, WANG C C, XU K W, et al.Coupling Analysis on Microstructure and Residual Stress in Selective Laser Melting (SLM) with Varying Key Process Parameters[J]. Materials, 2022, 15(5): 1658.
[12] 唐恩, 方杨铭, 王坤, 等. 基于选区激光熔化工艺的低弹性模量多孔材料的研究[J]. 应用激光, 2023, 43(12): 60-68.
TANG E, FANG Y M, WANG K, et al.Research on Porous Materials of Low Elastic Modulus Based on Selective Laser Melting Process[J]. Applied Laser, 2023, 43(12): 60-68.
[13] 段伟, 赵哲, 吉红伟, 等. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
DUAN W, ZHAO Z, JI H W, et al.Effects of Powder Properties and Selective Laser Melting Processing on the Densification Behavior of AlSi10Mg Alloy[J]. Materials Reports, 2019, 33(10): 1685-1690.
[14] EHSAN SAGHAIAN S, NEMATOLLAHI M, TOKER G, et al.Effect of Hatch Spacing and Laser Power on Microstructure, Texture, and Thermomechanical Properties of Laser Powder Bed Fusion (L-PBF) Additively Manufactured NiTi[J]. Optics & Laser Technology, 2022, 149: 107680.
[15] UDDIN S Z, MURR L E, TERRAZAS C A, et al.Processing and Characterization of Crack-Free Aluminum 6061 Using High-Temperature Heating in Laser Powder Bed Fusion Additive Manufacturing[J]. Additive Manufacturing, 2018, 22: 405-415.
[16] YU J, DU Y J, ZHOU Y.Preparation, Structure and Properties of FeCrAl Honeycombs[J]. Advanced Materials Research, 2013, 833: 305-309.
[17] HOFFMAN A K, UMRETIYA R V, GUPTA V K, et al.Oxidation Resistance in 1 200 ℃ Steam of a FeCrAl Alloy Fabricated by Three Metallurgical Processes[J]. JOM, 2022, 74(4): 1690-1697.
[18] DOVGYY B, SIMONELLI M, PHAM M S.Alloy Design Against the Solidification Cracking in Fusion Additive Manufacturing: An Application to a FeCrAl Alloy[J]. Materials Research Letters, 2021, 9(8): 350-357.
[19] 李刚, 吴松龄, 王辉. 热处理对Fe13Cr5Al1.5Nb合金晶粒尺寸及第二相析出行为的影响[J]. 热加工工艺, 2020, 49(10): 112-116.
LI G, WU S L, WANG H.Effects of Heat Treatment on Grain Sizes and Second Phase Precipitation Behavior of Fe13Cr5Al1.5Nb Alloy[J]. Hot Working Technology, 2020, 49(10): 112-116.
[20] YAN Y Q, AO J Q, JI Y Q, et al.Cracking Inhibition and Strengthening of FeCrAlY Alloy through Addition of TiC Nanoparticles during Laser Melting Deposition[J]. Vacuum, 2023, 212: 112014.
[21] LI A, CHEN Q C, WANG P, et al.Microstructure and Properties of Oxide-Reinforced FeCrAl Matrix Alloy Manufactured by Selective Laser Melting[J]. Materials Today Communications, 2024, 39: 109226.
[22] 邱国兴, 李嘉宁, 李琦, 等. FeCrAl铁素体不锈钢高温氧化行为[J]. 金属功能材料, 2024, 31(5): 101-109.
QIU G X, LI J N, LI Q, et al.High Temperature Oxidation Behavior of FeCrAl Ferritic Stainless Steel[J]. Metallic Functional Materials, 2024, 31(5): 101-109.
[23] 李昊, 孙浩, 孙继锋, 等. FeCrAl多孔材料烧结体表面球状物和结壳形成原因研究[J]. 有色金属材料与工程, 2019, 40(5): 22-26.
LI H, SUN H, SUN J F, et al.Study on the Formation of Spheres and Crust on the Surface of Sintered FeCrAl Porous Materials[J]. Nonferrous Metal Materials and Engineering, 2019, 40(5): 22-26.
[24] 卢洋, 赵哲, 明亮, 等. 选区激光熔化成形工艺参数对Fe20Cr5Al合金致密度和力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(5): 422-429.
LU Y, ZHAO Z, MING L, et al.Effects of Selective Laser Melting Processing Parameters on the Densification and Mechanical Properties of Fe20Cr5Al Alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 422-429.
[25] SHI Y N, LU Z, YU L, et al.Microstructure and Tensile Properties of Zr-Containing ODS-FeCrAl Alloy Fabricated by Laser Additive Manufacturing[J]. Materials Science and Engineering: A, 2020, 774: 138937.
[26] WU Q, QIAO C, WU Y H, et al.Numerical Investigation on the Reuse of Recycled Powders in Powder Bed Fusion Additive Manufacturing[J]. Additive Manufacturing, 2023, 77: 103821.
[27] LIU Y B, LI J K, XU K, et al.An Optimized Scanning Strategy to Mitigate Excessive Heat Accumulation Caused by Short Scanning Lines in Laser Powder Bed Fusion Process[J]. Additive Manufacturing, 2022, 60: 103256.
[28] 李家豪, 王燕燕, 舒林森, 等. 基于RSM-SA算法的激光熔覆参数多目标优化[J]. 热加工工艺, 2022, 51(22): 89-93.
LI J H, WANG Y Y, SHU L S, et al.Multi-Objective Optimization of Laser Cladding Parameters Based on RSM-SA Algorithm[J]. Hot Working Technology, 2022, 51(22): 89-93.
[29] GHORBANI J, LI J Z, SRIVASTAVA A K.Application of Optimized Laser Surface Re-Melting Process on Selective Laser Melted 316L Stainless Steel Inclined Parts[J]. Journal of Manufacturing Processes, 2020, 56: 726-734.
[30] HU Z J, ZHAO Z, DENG X, et al.Microstructure and Mechanical Behavior of TiCN Reinforced AlSi10Mg Composite Fabricated by Selective Laser Melting[J]. Materials Chemistry and Physics, 2022, 283: 125996.
[31] 杜沛南, 郑继云, 王辉, 等. Nb含量及退火温度对FeCrAl合金力学性能的影响[J]. 金属热处理, 2018, 43(12): 83-87.
DU P N, ZHENG J Y, WANG H, et al.Effects of Nb Content and Annealing Temperature on Mechanical Properties of FeCrAl Alloy[J]. Heat Treatment of Metals, 2018, 43(12): 83-87.
[32] MAHAFFEY J, BRITTAN A, GUCKENBERGER A, et al.Evaluation of Post-Weld Heat Treatments Applied to FeCrAl Alloy Weldments[J]. Journal of Nuclear Materials, 2019, 515: 160-169.
[33] NDUMIA J N, ZHU J P, GBENONTIN B V, et al.Effect of Heat Treatment on the Microstructure and Corrosion Behavior of Arc-Sprayed FeCrAl/Al Coating[J]. Journal of Materials Engineering and Performance, 2023, 32(4): 1489-1497.

基金

2019佛山市科技创新团队项目(FS0AA-KJ919-4402-0023); 阳江市引进创新科研团队项目(RCZX2024003); 云浮产学研项目(220627155594664)

PDF(11934 KB)

Accesses

Citation

Detail

段落导航
相关文章

/