目的 研究摆动MIG焊接技术对焊接接头组织变化和成形的影响。方法 采用不同热输入对7A52铝合金板材进行坡口摆动MIG焊接实验,并对焊接接头进行微观组织分析和力学性能测试,包括硬度测试和拉伸试验。结果 在热输入为8.56 kJ/mm的条件下,焊接接头的成形和力学性能最为理想。焊接接头的平均维氏硬度达到了111.7HV,其中焊缝区的硬度最低,为104.7HV,而热影响区(HAZ)的硬度最高,达到了114.52HV。在拉伸试验中,试件在焊缝区发生断裂,其抗拉强度为361 MPa,相当于母材抗拉强度的72%。结论 随着热输入的增加,焊缝区域的硬度逐渐降低。适当的热输入有助于形成细长等轴晶,减少再结晶现象,从而提高焊接接头的拉伸强度。
Abstract
The work aims to study the effects of oscillating MIG welding technology on the microstructural changes and weld joint formation. The research method involved conducting groove oscillating MIG welding experiments on 7A52 aluminum alloy plates with varying heat inputs and analyzing the resulting weld joints for microstructure and mechanical properties, including hardness and tensile tests. The results indicated that at a heat input of 8.56 kJ/mm, the weld joint demonstrated optimal formation and mechanical attributes. It had an average Vickers hardness of 111.7HV and the lowest hardness of 104.7HV was found in the weld area, whereas the heat affected zone (HAZ) exhibited the highest hardness, reaching 114.52HV. Tensile testing indicated that the specimen broke in the weld area with a strength of 361 MPa, which corresponded to 72% of the base material's tensile strength. In conclusion, as the heat input increases, there is a gradual decrease in the hardness of the weld zone. Furthermore, the right amount of heat input is beneficial for the development of slender, equiaxed grains, reducing recrystallization, and thus enhancing the tensile strength of the weld joint.
关键词
7A52铝合金 /
摆动MIG焊接 /
微观组织分析 /
硬度测试 /
拉伸性能
Key words
7A52 aluminum alloy /
oscillating MIG welding /
microstructure analysis /
hardness testing /
tensile properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 章友谊, 孙学杰, 朱小兵. 深冷处理对7A52铝合金MIG焊接接头性能的影响[J]. 电焊机, 2014, 44(10): 170-173.
ZHANG Y Y, SUN X J, ZHU X B.Effect of Cryogenic Treatment Properties of 7A52 Aluminum Alloy Welded Joint by MIG Welding Process[J]. Electric Welding Machine, 2014, 44(10): 170-173.
[2] 刘文辉, 李蓝宁, 黄浩, 等. 深冷处理对7A62铝合金微观组织和力学性能的影响[J]. 中国有色金属学报, 2024, 34(6): 2008-2018.
LIU W H, LI L N, HUANG H, et al.Effect of Cryogenic Treatment on Microstructure and Mechanical Properties of 7A62 Aluminum Alloy[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(6): 2008-2018.
[3] 康铭, 沈其明, 徐玉君, 等. 装甲车用7A52铝合金焊接性研究[J]. 有色金属加工, 2020, 49(1): 31-34.
KANG M, SHEN Q M, XU Y J, et al.Research on Weldability of 7A52 Aluminum Alloy for Armored Vehicle[J]. Nonferrous Metals Processing, 2020, 49(1): 31-34.
[4] CHEN K H, HUANG L P.Strengthening-Toughening of 7xxx Series High Strength Aluminum Alloys by Heat Treatment[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(3): 484-490.
[5] 陈超, 陈芙蓉, 张慧婧. 热输入对7A52铝合金光纤激光焊接头组织及性能的影响[J]. 焊接, 2017(1): 35-38.
CHEN C, CHEN F R, ZHANG H J.Effect of Welding Heat Input on Structure and Properties of Fiber Laser Welded Joints of 7A52 Aluminum Alloy[J]. Welding & Joining, 2017(1): 35-38.
[6] LIU D J, LIPPOLD J C, LI J, et al.Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components[J]. Metallurgical and Materials Transactions A, 2014, 45(10): 4454-4469.
[7] 王立楠. 7A52铝合金MIG焊接力学性能及腐蚀行为研究[D]. 长春: 长春工业大学, 2017.
WANG L N.Study on Mechanical Properties and Corrosion Behavior of 7A52 Aluminum Alloy in MIG Welding[D]. Changchun: Changchun University of Technology, 2017.
[8] 张欣, 冯曰海. 双脉冲对7A52铝合金MIG焊接质量的影响[J]. 机械制造与自动化, 2017, 46(5): 39-41.
ZHANG X, FENG Y H.Influence of Double Pulse MIG Welding on 7A52 Aluminum Alloy Welding Quality[J]. Machine Building & Automation, 2017, 46(5): 39-41.
[9] 陈鹏达, 徐锴, 徐玉君, 等. 7A52铝合金中厚板MIG焊接工艺优化[J]. 电焊机, 2023, 53(1): 84-90.
CHEN P D, XU K, XU Y J, et al.Optimization on MIG Welding Processing Parameters of 7A52 Aluminum Alloy Medium-Thickness Plate[J]. Electric Welding Machine, 2023, 53(1): 84-90.
[10] 彭云, 许良红, 田志凌, 等. 焊接热输入对高强铝合金接头组织和性能的影响[J]. 焊接学报, 2008, 29(2): 17-21.
PENG Y, XU L H, TIAN Z L, et al.Effect of Heat Input on Microstructure and Mechanical Properties of the High Strength Aluminum Alloy Welds[J]. Transactions of the China Welding Institution, 2008, 29(2): 17-21.
[11] 宋友宝, 李龙, 吕金明, 等. 7xxx系铝合金焊接研究现状与展望[J]. 中国有色金属学报, 2018, 28(3): 492-501.
SONG Y B, LI L, LYU J M, et al.Research Status and Perspective of 7xxx Series Aluminum Alloys Welding[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3): 492-501.
[12] 王东, 韩世伟, 张世全, 等. 5B06焊丝在7A52装甲铝合金上的焊接性研究[J]. 兵器材料科学与工程, 2016, 39(6): 17-20.
WANG D, HAN S W, ZHANG S Q, et al.ER5B06 Weldability on 7A52 Armored Aluminum Alloy[J]. Ordnance Material Science and Engineering, 2016, 39(6): 17-20.
[13] JI S D, MENG X C, HUANG R F, et al.Microstructures and Mechanical Properties of 7N01-T4 Aluminum Alloy Joints by Active-Passive Filling Friction Stir Repairing[J]. Materials Science and Engineering: A, 2016, 664: 94-102.
[14] 康铭, 沈其明, 徐玉君, 等. 装甲车用7A52铝合金焊接性研究[J]. 有色金属加工, 2020, 49(1): 31-34.
KANG M, SHEN Q M, XU Y J, et al.Research on Weldability of 7A52 Aluminum Alloy for Armored Vehicle[J]. Nonferrous Metals Processing, 2020, 49(1): 31-34.
[15] 章友谊, 刘华, 朱小兵. 7A52铝合金MIG焊焊接接头显微组织与性能研究[J]. 热加工工艺, 2013, 42(19): 172-174.
ZHANG Y Y, LIU H, ZHU X B.Microstructure and Property of Welded Joint of 7A52 Al Alloy by MIG Welding Process[J]. Hot Working Technology, 2013, 42(19): 172-174.
[16] HUANG J W, YIN Z M, LEI X F.Microstructure and Properties of 7A52 Al Alloy Welded Joint[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 804-808.
[17] HUANG H, YANG B MO J F. Study on Microstructures and Properties of 7A52 Aluminum Alloy Joints in Laser-MIG Hybrid Welding Conference Series[J]. Materials Science and Engineering, 2018, 392(2): 22-23
[18] YANG B, ZHOU H G, LIU Z C.Dynamic Mechanical Behavior and Microstructure Evolution of 7A52-T6 Alloy at Elevated Temperatures[J]. Journal of Physics: Conference Series, 2018, 18(4): 804-808.
[19] 张岩. 电弧增材制造7A48铝合金的组织与性能研究[D]. 沈阳: 沈阳航空航天大学, 2023.
ZHANG Y.Study on Microstructure and Properties of 7A48 Aluminum Alloy Made by Arc Additive[D]. Shenyang: Shenyang Aerospace University, 2023.
[20] 刘洪旭, 王艳杰, 刘峰, 等. 固溶时效处理对7A52铝合金CMT+P焊接接头组织及性能的影响[J]. 稀有金属材料与工程, 2023, 52(5): 1905-1914.
LIU H X, WANG Y J, LIU F, et al.Effect of Solution Aging Treatment on Microstructure and Properties of 7A52 Aluminum Alloy CMT+P Welded Joint[J]. Rare Metal Materials and Engineering, 2023, 52(5): 1905-1914.
[21] 罗忠宇. 7A52铝合金焊接接头动态力学行为与抗弹性能有限元分析[D]. 湘潭: 湖南科技大学, 2022.
LUO Z Y.Finite Element Analysis of Dynamic Mechanical Behavior and Elastic Resistance of 7A52 Aluminum Alloy Welded Joints[D]. Xiangtan: Hunan University of Science and Technology, 2022.
[22] 许雪宗. 7A52高强铝合金激光及电弧复合焊工艺试验研究[D]. 南京: 南京理工大学, 2020.
XU X Z.Experimental Study on Laser and Arc Hybrid Welding Technology of 7A52 High Strength Aluminum Alloy[D]. Nanjing: Nanjing University of Science and Technology, 2020.
[23] 张林. 7A52铝合金厚板激光-MIG复合焊接工艺研究[D]. 南京: 南京理工大学, 2018.
ZHANG L.Study on Laser-MIG Hybrid Welding Technology of 7A52 Aluminum Alloy Thick Plate[D]. Nanjing: Nanjing University of Science and Technology, 2018.
[24] 童赫. 7A52铝合金脉冲超声-MIG复合焊接研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
TONG H.Study on Pulsed Ultrasonic-MIG Hybrid Welding of 7A52 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology, 2016.
[25] 陈轩, 李萌蘖, 卜恒勇, 等. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 200-208.
CHEN X, LI M L, BU H Y, Research Status and Prospects of Welding Technology for Zuo Hanning 7-series Aluminum Alloy[J]. Journal Article 2023 Material Introduction, 2023, 37(13): 200-208.
[26] 邹文凤, 戴开明, 曲飞飞. 铝合金增材制造工艺研究现状[J]. 精密成形工程, 2024, 16(9): 143-152.
ZOU W F, DAI K M, QU F F.Research Status of Additive Manufacturing Technology of Aluminum Alloy[J]. Journal of Netshape Forming Engineering, 2024, 16(9): 143-152.
基金
河北省重点研发计划(22341801D); 河北省重点研发计划(23311802D); 北京市属高校分类发展项目(11000023T000002199202); 北京市属高等学校高水平科研创新团队建设支持计划(BPHR20220110)