LAZ931镁锂合金热变形行为及组织性能演变规律

吕云翔, 卢振, 武练梅, 李霏, 易满满, 高诗情, 夏祥生

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 138-144.

PDF(3616 KB)
PDF(3616 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 138-144. DOI: 10.3969/j.issn.1674-6457.2025.07.015
轻合金成形

LAZ931镁锂合金热变形行为及组织性能演变规律

  • 吕云翔1, 卢振1,*, 武练梅2, 李霏2, 易满满2, 高诗情3, 夏祥生3
作者信息 +

Thermal Deformation Behavior and Microstructure Properties Evolution of LAZ931 MG-Li Alloy

  • LYU Yunxiang1, LU Zhen1,*, WU Lianmei2, LI Fei2, YI Manman2, GAO Shiqing3, XIA Xiangsheng3
Author information +
文章历史 +

摘要

目的 研究LAZ931镁锂合金的热变形行为及其对微观组织的影响规律以及热变形参数对力学性能的影响。方法 通过热压缩变形实验获得了LAZ931镁锂合金在变形温度为150~300 ℃、应变速率为10-3~1 s-1条件下的热压缩曲线,建立了其本构模型与热加工图,研究了热变形对微观组织的影响规律,并采用等温锻造的方法制备了锻态镁锂合金,研究了变形工艺参数对力学性能的影响规律。结果 LAZ931镁锂合金在热变形过程中通过动态再结晶显著细化了微观组织,且随着变形温度的升高和应变速率的降低,两相晶粒尺寸逐渐长大;等温锻造可显著改善合金力学性能,其拉伸强度与延伸率随变形温度的升高和应变速率的降低而逐渐降低,在250 ℃、10-2 s-1名义条件下进行锻造后,其屈服强度、抗拉强度、延伸率分别达到175 MPa、195 MPa和21.8%,较原始材料分别提升了28%、18%和82%。结论 通过分析实验数据可以得出LAZ931镁锂合金具有优异的热加工性能。

Abstract

The work aims to investigate the thermal deformation behavior of LAZ931 MG-Li alloy, the impact of thermal deformation on its microstructure, and the influence of thermal deformation parameters on its mechanical properties. A hot compression deformation test was conducted on LAZ931 MG-Li alloy within a temperature range of 150-300 ℃ and strain rates of 10-3 to 1 s-1, yielding its hot compression curve. Its constitutive model and hot working diagram were established. The effect of hot deformation on the microstructure was examined. As-cast MG-li alloy was prepared by isothermal forging. The influence of deformation parameters on mechanical properties was explored. The microstructure of LAZ931 MLi-Laz931 alloy was significantly refined through dynamic recrystallization during the hot deformation process, and the grain size of the two phases gradually increased with the rise of deformation temperature and the decrease of the strain rate. Isothermal forging could significantly improve the mechanical properties of the alloy. As the deformation temperature increased and the strain rate decreased, the alloy's tensile strength and elongation exhibited a gradual decline. After forging at 250 ℃ and 10-2 s-1, the yield strength, tensile strength, and elongation reached 175 MPa, 195 MPa, and 21.8%, respectively. These values represent increases of 28%, 18%, and 82% compared with the original material. In conclusion, LAZ931 MG-Li alloy exhibits excellent hot working performance.

关键词

镁锂合金 / 热变形 / 组织演化 / 动态再结晶 / 力学性能

Key words

magnesium-lithium alloy / heat deformation / organizational evolution / dynamic recrystallization / mechanical property

引用本文

导出引用
吕云翔, 卢振, 武练梅, 李霏, 易满满, 高诗情, 夏祥生. LAZ931镁锂合金热变形行为及组织性能演变规律[J]. 精密成形工程. 2025, 17(7): 138-144 https://doi.org/10.3969/j.issn.1674-6457.2025.07.015
LYU Yunxiang, LU Zhen, WU Lianmei, LI Fei, YI Manman, GAO Shiqing, XIA Xiangsheng. Thermal Deformation Behavior and Microstructure Properties Evolution of LAZ931 MG-Li Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 138-144 https://doi.org/10.3969/j.issn.1674-6457.2025.07.015
中图分类号: TG146.2+2   

参考文献

[1] 王军武, 刘旭贺, 王飞超, 等. 航空航天用高性能超轻镁锂合金[J]. 军民两用技术与产品, 2013(6): 21-24.
WANG J W, LIU X H, WANG F C, et al.High- Performance Ultra-Light Mg-Li Alloy for Aerospace[J]. Dual Use Technologies & Products, 2013(6): 21-24.
[2] 冯凯, 李丹明, 何成旦, 等. 航天用超轻镁锂合金研究进展[J]. 特种铸造及有色合金, 2017, 37(2): 140-144.
FENG K, LI D M, HE C D, et al.Progress in Superlight Mg-Li Alloys for Aerospace Industry[J]. Special Casting & Nonferrous Alloys, 2017, 37(2): 140-144.
[3] WU R, YAN Y, WANG G, et al.Recent Progress in Magnesium-Lithium Alloys[J]. International Materials Reviews, 2015, 60(2): 65-100.
[4] WESTENGEN H.Magnesium Alloys for Structural Applications; Recent Advances[J]. Le Journal de Physique IV, 3(C7): C7-491-C7-501.
[5] WANG D, LIU S J, WU R Z, et al.Synergistically Improved Damping, Elastic Modulus and Mechanical Properties of Rolled Mg-8Li-4Y-2Er-2Zn-0.6Zr Alloy with Twins and Long-Period Stacking Ordered Phase[J]. Journal of Alloys and Compounds, 2021, 881: 160663.
[6] LI X Q, LE Q C, HU C L, et al.Hot Tensile Deformation Behaviour and Microstructure Evolution of Al3La Phase Reinforced Mg-5Li-3Al-2Zn Alloy Formed In-Situ by La2O3 Particle[J]. Materials Characterization, 2022, 185: 111772.
[7] 彭翔, 刘文才, 吴国华. 镁锂合金的合金化及其应用[J]. 中国有色金属学报, 2021, 31(11): 3024-3043.
PENG X, LIU W C, WU G H.Alloying and Application of Mg-Li Alloys: A Review[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3024-3043.
[8] 孔姝婷, 曹富荣. 多向锻造道次对Mg-5.21Li-3.00 (Al-Si)-2.16Sn-1.90Y-0.93Er合金组织性能的影响[J]. 有色金属材料与工程, 2023, 44(4): 11-18.
KONG S T, CAO F R.Effect of Multidirectional Forging Pass on Microstructure and Properties of Mg- 5.21Li-3.00(Al-Si)-2.16Sn-1.90Y-0.93Er Alloy[J]. Nonferrous Metal Materials and Engineering, 2023, 44(4): 11-18.
[9] CHEN Z Y, TONG R, DONG Z C.Plastic Flow Characteristics of an Extruded Mg-Li-Zn-RE Alloy[J]. Rare Metal Materials and Engineering, 2013, 42(9): 1779-1784.
[10] 刘俊伟, 戴木海, 鲁世强, 等. LZ61镁锂合金热变形行为及微观组织研究[J]. 特种铸造及有色合金, 2019, 39(1): 1-5.
LIU J W, DAI M H, LU S Q, et al.Hot Deformation Behavior and Microstructure of LZ61 Alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(1): 1-5.
[11] 张梦娜. Mg-Li-Al-Y合金的强韧化机理及热变形行为研究[D]. 西宁: 青海大学, 2020.
ZHANG M N.Study on Strengthening and Toughening Mechanism and Thermal Deformation Behavior of Mg-Li-Al-Y Alloy[D]. Xining: Qinghai University, 2020.
[12] 李奕. 镁锂合金热变形行为及搅拌摩擦加工对其组织与性能影响研究[D]. 济南: 山东大学, 2022.
LI Y.Study on Hot Deformation Behavior of Mg-Li Alloy and the Effect of Friction Stir Processing on Its Microstructure and Properties[D]. Jinan: Shandong University, 2022.
[13] ZHOU Y C, CHEN Z Y, JI J H, et al.Dynamic Nano Precipitation Behavior of As-Cast Mg-4Li-4Zn-Y Alloy during High Temperature Deformation[J]. Materials Science and Engineering: A, 2017, 707: 110-117.
[14] ZHOU Y C, CHEN Z Y, JI J, et al.Optimization of Hot Deformation Parameters and Constitutive Analysis for As-Cast Mg-5Li-3Zn-0.3Y Alloy Using Processing Maps[J]. Journal of Materials Engineering and Performance, 2018, 27(9): 4606-4615.
[15] 苏泉. 镁锂合金电热处理及筒形件挤压成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
SU Q.Study on Electrothermal Treatment of Mg-Li Alloy and Extrusion Forming Process of Cylindrical Parts[D]. Harbin: Harbin Institute of Technology, 2021.
[16] ZHOU Y C, CHEN Z Y, JI J H, et al.Effects of Second Phases on Deformation Behavior and Dynamic Recrystallization of As-Cast Mg-4.3Li-4.1Zn-1.4Y Alloy during Hot Compression[J]. Journal of Alloys and Compounds, 2019, 770: 540-548.
[17] SHALBAFI M, ROUMINA R, MAHMUDI R.Hot Deformation of the Extruded Mg-10Li-1Zn Alloy: Constitutive Analysis and Processing Maps[J]. Journal of Alloys and Compounds, 2017, 696: 1269-1277.
[18] LI C Q, XU D K, YU S, et al.Effect of Icosahedral Phase on Crystallographic Texture and Mechanical Anisotropy of Mg-4%Li Based Alloys[J]. Journal of Materials Science & Technology, 2017, 33(5): 475-480.
[19] WEI G B, PENG X D, HADADZADEH A, et al.Constitutive Modeling of Mg-9Li-3Al-2Sr-2Y at Elevated Temperatures[J]. Mechanics of Materials, 2015, 89: 241-253.
[20] SELLARS C M.Computer Modelling of Hot-Working Processes[J]. Materials Science and Technology, 1985, 1(4): 325-332.
[21] SELLARS C M, MCTEGART W J.On the Mechanism of Hot Deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[22] 王海宇, 帅美荣, 唐佳伟, 等. 铸态AZ31镁合金热变形行为研究[J]. 太原科技大学学报, 2020, 41(5): 373-377.
WANG H Y, SHUAI M R, TANG J W, et al.Study on Thermal Deformation Behavior of As-Cast AZ31 Magnesium Alloy[J]. Journal of Taiyuan University of Science and Technology, 2020, 41(5): 373-377.
[23] ZENER C, HOLLOMON J H.Effect of Strain Rate Upon Plastic Flow of Steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[24] LI J Q, LIU J, CUI Z S.Characterization of Hot Deformation Behavior of Extruded ZK60 Magnesium Alloy Using 3D Processing Maps[J]. Materials & Design (1980-2015), 2014, 56: 889-897.
[25] ROBSON J D, HENRY D T, DAVIS B.Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation[J]. Acta Materialia, 2009, 57(9): 2739-2747.

PDF(3616 KB)

Accesses

Citation

Detail

段落导航
相关文章

/