二次冷轧制备Fe-3.5%Si无取向硅钢组织织变研究

王伊南, 鲁辉虎, 林媛, 顾祥宇, 乔卫东, 杨胜超, 祁成哲, 李泽阳

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 102-109.

PDF(6401 KB)
PDF(6401 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 102-109. DOI: 10.3969/j.issn.1674-6457.2025.07.012
钢铁成形

二次冷轧制备Fe-3.5%Si无取向硅钢组织织变研究

  • 王伊南1, 鲁辉虎1,*, 林媛2, 顾祥宇2, 乔卫东1, 杨胜超1, 祁成哲1, 李泽阳1
作者信息 +

Microstructure Evolution of Fe-3.5%Si Non-oriented Silicon Steel Prepared by Double Cold Rolling

  • WANG Yi'nan1, LU Huihu1,*, LIN Yuan2, GU Xiangyu2, QIAO Weidong1, YANG Shengchao1, QI Chengzhe1, LI Zeyang1
Author information +
文章历史 +

摘要

目的 以3.5%(质量分数)Si无取向硅钢热轧板为对象,研究采用二次冷轧法制备0.25 mm厚无取向硅钢过程中微观组织与织构的演变规律。方法 通过冷轧与热处理实验、EBSD及室温拉伸实验,研究了制备过程中无取向硅钢的微观组织织构及性能。结果 热轧板表层发生部分再结晶,由剪切带、回复组织与细小等轴晶组成,中心层存在大量剪切带与变形带;表层以Goss织构为主,中心层由锋锐α纤维织构组成。经950 ℃×3 min常化后发生完全再结晶,平均晶粒尺寸为(147.6±1.9) μm;α纤维织构转变为α*纤维织构。一次冷轧板中存在完整α纤维织构与γ纤维织构,经950 ℃×3 min中间退火后发生完全再结晶,平均晶粒尺寸为(119.3±6.9) μm。二次冷轧板中为锋锐$\{001\}\langle 1 \overline{1} 0\rangle$织构与γ纤维织构。经960 ℃×3 min再结晶退火后,平均晶粒尺寸为(145.4±4.4) μm,织构组分主要为立方、旋转立方与Goss织构,退火后试样屈服强度为515.6 MPa,断后伸长率为11.6%。结论 通过二次冷轧法获得了高强无取向硅钢,其中屈服强度强化机制以固溶强化为主,贡献值为357.63 MPa,占比67.63%;最终退火试样磁感值B5000为1.690 T;铁损值P1.0/400为13.37 W/kg。

Abstract

The work aims to take the 3.5wt.% Si non-oriented silicon steel as the research object and investigate the evolution of microstructure and texture of the 0.25 mm thick non-oriented silicon steel by double cold rolling. The microstructure and properties of the non-oriented silicon steel during preparation were studied through cold rolling, heat treatment, EBSD and tensile test at room temperature. The surface layer of the hot rolled plate was partially recrystallized and consisted of shear bands, recovery structures and fine equiaxed crystals, and there were a lot of shear bands and deformation bands in the center layer. The surface layer was mainly composed of Goss texture, and the central layer was composed of Fan-sharp α fiber texture. Complete recrystallization occurred after normalization at 950 ℃×3 min, and the average grain size was (147.6±1.9) μm. α fiber texture was transformed into α* fiber texture. The α-fiber texture and γ-fiber texture of the first cold rolled plate were completely recrystallized after annealing at 950 ℃×3 min. The average grain size was (119.3±6.9) μm. In the secondary cold rolled plate, there were sharp $\{001\}\langle 1 \overline{1} 0\rangle$ texture and γ-fiber texture. After recrystallization and annealing at 960 ℃×3 min, the average grain size was (145.4±4.4) μm. The texture groups were divided into cubic, rotating cubic and Goss textures. The yield strength and elongation after annealing were 515.6 MPa and 11.6%. The high-strength non-oriented silicon steel was obtained by double cold rolling. The strengthening mechanism of yield strength is mainly solid solution strengthening, and the contribution value is 357.63 MPa, accounting for 67.63%. The magnetic inductance B5000 of the final annealed sample is 1.690 T and the iron loss P1.0/400 is 13.37 W/kg.

关键词

无取向硅钢 / 二次冷轧 / 退火温度 / 微观织构 / 力学性能

Key words

non-oriented silicon steel / double cold rolling / annealing temperature / micro-texture / mechanical property

引用本文

导出引用
王伊南, 鲁辉虎, 林媛, 顾祥宇, 乔卫东, 杨胜超, 祁成哲, 李泽阳. 二次冷轧制备Fe-3.5%Si无取向硅钢组织织变研究[J]. 精密成形工程. 2025, 17(7): 102-109 https://doi.org/10.3969/j.issn.1674-6457.2025.07.012
WANG Yi'nan, LU Huihu, LIN Yuan, GU Xiangyu, QIAO Weidong, YANG Shengchao, QI Chengzhe, LI Zeyang. Microstructure Evolution of Fe-3.5%Si Non-oriented Silicon Steel Prepared by Double Cold Rolling[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 102-109 https://doi.org/10.3969/j.issn.1674-6457.2025.07.012
中图分类号: TG142.1   

参考文献

[1] 胡明睿, 朱英杰, 赵益鋆, 等. 新能源汽车驱动电机用无取向硅钢性能分析[J]. 电工钢, 2023, 5(3): 28-33.
HU M R, ZHU Y J, ZHAO Y J, et al.Performance Analysis of Non-Oriented Silicon Steel for Motor of New Energy Vehicle[J]. Electrical Steel, 2023, 5(3): 28-33.
[2] 郭克星, 高杰, 房世超. 无取向硅钢磁性能的研究现状[J]. 中国重型装备, 2024(1): 5-13.
GUO K X, GAO J, FANG S C.Research Status of Magnetic Properties of Non-Oriented Silicon Steel[J]. China Heavy Equipment, 2024(1): 5-13.
[3] 朱诚意, 鲍远凯, 汪勇, 等. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
ZHU C Y, BAO Y K, WANG Y, et al.Research Progress on Application Status and Property Control of Non-Oriented Silicon Steel for Traction Motor of New Energy Vehicles[J]. Materials Reports, 2021, 35(23): 23089-23096.
[4] 李涛, 孟双, 徐志远, 等. 冷轧加工率对5182-O铝合金汽车板性能和织构的影响[J]. 精密成形工程, 2024, 16(5): 124-131.
LI T, MENG S, XU Z Y, et al.Effect of Cold Rolling Reduction Rate on Texture and Mechanical Property of 5182-O Aluminum Alloy Used in Automotive Sheets[J]. Journal of Netshape Forming Engineering, 2024, 16(5): 124-131.
[5] 张显东, 王妍, 柳超, 等. 新能源汽车驱动电机用无取向硅钢开发及应用研究现状[J]. 汽车工艺与材料, 2022(9): 9-14.
ZHANG X D, WANG Y, LIU C, et al.Development and Application Research Status on Non-Oriented Silicon Steel for Driving Motor of New Energy Vehicles[J]. Automobile Technology & Material, 2022(9): 9-14.
[6] 程朝阳, 钟柏林, 倪正轩, 等. 新能源汽车驱动电机用高强无取向硅钢力、磁性能调控研究进展[J]. 工程科学学报, 2023, 45(9): 1482-1492.
CHENG Z Y, ZHONG B L, NI Z X, et al.Research Progress on Simultaneous Control of Mechanical and Magnetic Properties of High-Strength Non-Oriented Silicon Steel for New Energy Vehicle Driving Motors[J]. Chinese Journal of Engineering, 2023, 45(9): 1482-1492.
[7] DU Y Z, O’MALLEY R, BUCHELY M F. Review of Magnetic Properties and Texture Evolution in Non-Oriented Electrical Steels[J]. Applied Sciences, 2023, 13(10): 6097.
[8] LIN Y, WANG H X, WANG S J, et al.Roles of Silicon Content and Normalization Temperature on Cold Workability and Recrystallization of High-Grade Non-Oriented Silicon Steel[J]. Crystals, 2022, 12(5): 593.
[9] 马良, 项利, 仇圣桃, 等. 二次冷轧法对薄带连铸无取向高硅钢组织和磁性能的影响[J]. 钢铁研究学报, 2013, 25(10): 42-46.
MA L, XIANG L, QIU S T, et al.Effect of Double Cold Rolling on Magnetic Property and Microstructure of Non-Oriented High Silicon Steel Sheets Cast by Strip Casting Process[J]. Journal of Iron and Steel Research, 2013, 25(10): 42-46.
[10] LI Z H, XIE S K, WANG G D, et al.Dependence of Recrystallization Behavior and Magnetic Properties on Grain Size Prior to Cold Rolling in High Silicon Non-Oriented Electrical Steel[J]. Journal of Alloys and Compounds, 2021, 888: 161576.
[11] 钱红伟, 张杰, 秦松, 等. 常化温度对高牌号无取向硅钢热轧板组织及冲击韧性的影响[J]. 塑性工程学报, 2022, 29(8): 203-208.
QIAN H W, ZHANG J, QIN S, et al.Effect of Normalizing Temperature on Microstructure and Impact Toughness of High Grade Non-Oriented Silicon Steel Hot-Rolled Sheet[J]. Journal of Plasticity Engineering, 2022, 29(8): 203-208.
[12] 林媛, 王红霞, 张文康, 等. 大压下率冷轧无取向硅钢织构演变及性能[J]. 中国冶金, 2022, 32(5): 64-70.
LIN Y, WANG H X, ZHANG W K, et al.Texture Evolution and Properties of Non-Oriented Silicon Steel Cold Rolled with High Reduction Rate[J]. China Metallurgy, 2022, 32(5): 64-70.
[13] YASUDA M, KATAOKA T, USHIGAMI Y, et al.Texture Evolution during Recrystallization and Grain Growth in Heavily Cold-Rolled Fe-3%Si Alloy[J]. ISIJ International, 2018, 58(10): 1893-1900.
[14] 张兴海, 杨超, 贾宝瑞, 等. 退火温度对双辊薄带连铸高强度无取向硅钢组织和性能的影响[J]. 钢铁研究学报, 2020, 32(11): 1000-1005.
ZHANG X H, YANG C, JIA B R, et al.Effect of Annealing Temperature on Microstructure and Properties of High Strength Non-Oriented Silicon Steel Produced by Twin-Roll Casting Process[J]. Journal of Iron and Steel Research, 2020, 32(11): 1000-1005.
[15] 严加根, 贾银芳, 李京栋, 等. 基于热轧工艺参数的冷轧变形抗力预报建模研究[J]. 钢铁研究学报, 2023, 35(9): 1100-1109.
YAN J G, JIA Y F, LI J D, et al.Modeling Research of Cold Rolling Deformation Resistance Prediction Based on Hot Rolling Process Parameters[J]. Journal of Iron and Steel Research, 2023, 35(9): 1100-1109.
[16] CHENG L, YANG P, FANG Y P, et al.Preparation of Non-Oriented Silicon Steel with High Magnetic Induction Using Columnar Grains[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(23): 4068-4072.
[17] XU C, XU H J, SHU X D, et al.Effect of Cold Rolling Process on Texture Evolution of Gradient Microstructure in Fe-3.0%Si Non-Oriented Silicon Steel[J]. Metalurgija, 2024, 63(1): 77-80.
[18] JIANG W N, WU X L, YANG P, et al.Relationship between the Initial {100} Textures and the Shear Textures Developed in Sheet Surface during Hot Rolling of Non-Oriented Silicon Steel[J]. Materials Characterization, 2021, 182: 111534.
[19] LI H Z, LIU Z Y, WANG X L, et al.{114}<4-81> Annealing Texture in Twin-Roll Casting Non-Oriented 6.5 wt% Si Electrical Steel[J]. Journal of Materials Science, 2017, 52(1): 247-259.
[20] ZU G Q, ZHANG X M, ZHAO J W, et al.Analysis of {411} Recrystallisation Texture in Twin-Roll Strip Casting of 4.5wt% Si Non-Oriented Electrical Steel[J]. Materials Letters, 2016, 180: 63-67.
[21] 杨经富. 薄规格无取向电工钢中α*织构的演变规律及其对磁性能的影响[D]. 赣州: 江西理工大学, 2021.
YANG J F.Evolution of α* Texture in Thin Non-oriented Electrical Steel and Its Influence on Magnetic Properties[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[22] FANG F, CHE S F, HOU D W, et al.Thin-Gauge Non- Oriented Silicon Steel with Balanced Magnetic and Mechanical Properties Processed by Strip Casting[J]. Materials Science and Engineering: A, 2022, 831: 142284.
[23] 柳金龙, 沙玉辉, 张芳, 等. 利用二次冷轧法改善高硅钢薄带的再结晶织构[J]. 功能材料, 2015, 46(20): 20136-20139.
LIU J L, SHA Y H, ZHANG F, et al.Improvement of Recrystallization Texture in High Silicon Steel Shin Sheets by Two-Stage Cold Rolling Method[J]. Journal of Functional Materials, 2015, 46(20): 20136-20139.
[24] 鲁辉虎. 薄带连铸取向硅钢组织、织构及抑制剂演变研究[D]. 沈阳: 东北大学, 2013.
LU H H.Study on Microstructure, Texture and Inhibitor Evolution of Thin Strip Continuous Casting Oriented Silicon Steel[D]. Shenyang: Northeastern University, 2013.
[25] 田中一郎, 屋铺裕义, 岩本繁夫, 等. 资源节约型高强度电工钢SXRC的开发[J]. 钢铁研究学报, 2011, 23(6): 63-66.
KOICHIRO T, HOUSE Y, SHIGEO I, et al.Development of High Strength Electrical Steel SXRC of Resource-Saving Design[J]. Journal of Iron and Steel Research, 2011, 23(6): 63-66.
[26] SHA Y H, SUN C, ZHANG F, et al.Strong Cube Recrystallization Texture in Silicon Steel by Twin-Roll Casting Process[J]. Acta Materialia, 2014, 76: 106-117.
[27] WU S J, WANG W L, YUE C X, et al.Effect of Annealing Stress on the Magnetic Properties of High-Grade Non-Oriented Electrical Steel[J]. Metallurgical and Materials Transactions A, 2024, 55(8): 2602-2608.
[28] JIAO H T, WU W S, HOU Z B, et al.Ultrastrong {100} Texture in Twin-Roll Strip Cast Non-Oriented Electrical Steel through Two-Step Annealing[J]. Scripta Materialia, 2024, 243: 115998.
[29] DU L Y, LU H H, HAN J S, et al.Effects of Laves Phase Precipitation Embrittlement and Its Dissolution Kinetics in Super-Ferritic Stainless Steels on the Ductile-Brittle Transition[J]. Materials Science and Engineering: A, 2024, 896: 146259.
[30] TAYLOR G I.The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855): 362-387.
[31] BATA V, PERELOMA E V.An Alternative Physical Explanation of the Hall-Petch Relation[J]. Acta Materialia, 2004, 52(3): 657-665.

基金

太原市关键核心技术攻关“揭榜挂帅”项目(并财教(2023)122号); 山西省研究生实践创新项目(2023SJ194); 山西省专利转化计划(202402014)

PDF(6401 KB)

Accesses

Citation

Detail

段落导航
相关文章

/