电脉冲诱导下AZ31镁合金动态再结晶与β-Mg17Al12相低温溶解的协同机制影响

高翔宇, 严仁杰, 张涛, 王艳艳, 郭应龙, 邹金超

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 62-68.

PDF(8693 KB)
PDF(8693 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 62-68. DOI: 10.3969/j.issn.1674-6457.2025.07.007
复合材料轧制工艺与装备

电脉冲诱导下AZ31镁合金动态再结晶与β-Mg17Al12相低温溶解的协同机制影响

  • 高翔宇1, 严仁杰1, 张涛1, 王艳艳2, 郭应龙1, 邹金超1,*
作者信息 +

Synergistic Mechanisms of Electropulsing-induced Dynamic Recrystallization and Low-temperature Dissolution of β-Mg17Al12 Phase in AZ31 Magnesium Alloy

  • GAO Xiangyu1, YAN Renjie1, ZHANG Tao1, WANG Yanyan2, GUO Yinglong1, ZOU Jinchao1,*
Author information +
文章历史 +

摘要

目的 探讨了电脉冲处理对轧制态AZ31镁合金显微组织演变及力学性能的影响机制。方法 通过调控电流密度和频率,结合金相观察、XRD分析、力学性能测试及断口形貌表征,揭示了电脉冲处理诱导动态再结晶与β-Mg17Al12相低温溶解的协同作用机理。结果 脉冲电流的焦耳热效应和电子风力协同促进了晶粒的等轴细化,当电流密度为37.5 A/mm2、频率为200 Hz时,晶粒尺寸由轧态的24.59 μm细化至18.65 μm,延伸率提升了133%,抗拉强度仅下降了7.2%。XRD分析结果表明,β相在250 ℃以下发生非热溶解。究其原因是电子风力驱动Al原子扩散;同时,脉冲电流诱导位错增殖形成的界面缺陷提供了更多的原子扩散通道,加速了β相的溶解。断口形貌从脆韧混合型向全韧性转变,韧窝密度与尺寸随再结晶程度的增加而显著优化。显微硬度测试结果显示,随着电流密度和频率的增大,硬度逐渐下降,该变化趋势与镁合金的再结晶程度和位错密度降低相关。结论 电脉冲处理通过细化组织、溶解脆性相及降低位错密度,使AZ31镁合金的强塑性匹配性得到有效改善,为镁合金短流程精密成形技术提供了理论支持与工艺优化方向。

Abstract

The work aims to systematically investigate the effect of electropulsing treatment (EPT) on the microstructural evolution and mechanical properties of rolled AZ31 magnesium alloy. By regulating current density and frequency, combined with metallographic observation, XRD analysis, mechanical testing, and fractography characterization, the synergistic mechanisms of EPT-induced dynamic recrystallization and low-temperature dissolution of the β-Mg17Al12 phase were revealed. The combined effects of Joule heating and electron wind force significantly promoted equiaxed grain refinement. Under optimized parameters (37.5 A/mm2, 200 Hz), the grain size was refined from 24.59 μm (as-rolled) to 18.65 μm, accompanied by a 133% increase in elongation and a marginal 7.2% reduction in tensile strength. XRD analysis revealed that the β phase underwent athermal dissolution below 250 ℃. This phenomenon was attributed to the electron wind force driving the diffusion of Al atoms, while the pulsed current-induced dislocation multiplication generated interfacial defects, providing additional diffusion pathways for atoms and thereby promoting the dissolution of the β phase. Fracture morphology transitioned from a mixed brittle-ductile mode to a fully ductile mode, with dimple density and size exhibiting significant optimization as recrystallization progressed. Microhardness testing indicated a gradual decline in hardness with the increasing current density and frequency, which was consistent with reduced dislocation density and enhanced recrystallization. EPT effectively improves the strength-ductility balance of AZ31 alloy through grain refinement, dissolution of brittle phases, and dislocation elimination, offering critical theoretical insights and technical guidance for advancing short-process precision forming technologies in magnesium alloy applications.

关键词

AZ31镁合金 / 电脉冲处理 / 力学性能 / 组织演变 / 位错增殖

Key words

AZ31 magnesium alloy / electropulsing treatment / mechanical properties / microstructural evolution / dislocation multiplication

引用本文

导出引用
高翔宇, 严仁杰, 张涛, 王艳艳, 郭应龙, 邹金超. 电脉冲诱导下AZ31镁合金动态再结晶与β-Mg17Al12相低温溶解的协同机制影响[J]. 精密成形工程. 2025, 17(7): 62-68 https://doi.org/10.3969/j.issn.1674-6457.2025.07.007
GAO Xiangyu, YAN Renjie, ZHANG Tao, WANG Yanyan, GUO Yinglong, ZOU Jinchao. Synergistic Mechanisms of Electropulsing-induced Dynamic Recrystallization and Low-temperature Dissolution of β-Mg17Al12 Phase in AZ31 Magnesium Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 62-68 https://doi.org/10.3969/j.issn.1674-6457.2025.07.007
中图分类号: TG335   

参考文献

[1] HUANG Z Q, HUANG Q X, WEI J C, et al.Inhibitory Effects of Prefabricated Crown on Edge Crack of Rolled AZ31 Magnesium Alloy Plate[J]. Journal of Materials Processing Technology, 2017, 246: 85-92.
[2] 李忠盛, 潘复生, 张静. AZ31镁合金的研究现状和发展前景[J]. 金属成形工艺, 2004(1): 54-57.
LI Z S, PAN F S, ZHANG J.Present Research Status and Development Prospect of AZ31 Magnesium Alloy[J]. Metal Forming Technology, 2004(1): 54-57.
[3] ZHAO P J, WU Q, YANG Y L, et al.Process Optimization of the Hot Stamping of AZ31 Magnesium Alloy Sheets Based on Response Surface Methodology[J]. Materials, 2023, 16(5): 1867.
[4] 张娜娜, 李全安, 陈晓亚, 等. 变形镁合金织构调控的研究进展[J]. 材料热处理学报, 2024, 45(8): 13-26.
ZHANG N N, LI Q A, CHEN X Y, et al.Research Progress on Texture Control of Wrought Magnesium Alloys[J]. Transactions of Materials and Heat Treatment, 2024, 45(8): 13-26.
[5] WANG T, WANG Y L, BIAN L P, et al.Microstructural Evolution and Mechanical Behavior of Mg/Al Laminated Composite Sheet by Novel Corrugated Rolling and Flat Rolling[J]. Materials Science and Engineering: A, 2019, 765: 138318.
[6] LIU Y H, CHEN Z, HUANG Y, et al.Effect of Cryogenic Treatment on 7A09 Aluminum Alloy and Optimization of Process Parameters[J]. Journal of Materials Engineering and Performance, 2024: 1-15.
[7] MOLNÁR P, JÄGER A. Multi-Temperature Equal Channel Angular Pressing of Mg-3wt%Al-1wt%Zn Alloy[J]. Philosophical Magazine, 2013, 93(27): 3612-3626.
[8] 范爱琴, 周乐育, 邓陈虹, 等. 等通道转角挤压超细晶材料技术及其发展[J]. 钢铁研究学报, 2012, 24(7): 1-4.
FAN A Q, ZHOU L Y, DENG C H, et al.Research and Development of Ultra-Fine Grain Technology with Equal Channel Angular Extrusion Processing[J]. Journal of Iron and Steel Research, 2012, 24(7): 1-4.
[9] CHEN K, ZHAN L H, XU Y Q, et al.Effect of Pulsed Current Density on Creep-Aging Behavior and Microstructure of AA7150 Aluminum Alloy[J]. Journal of Materials Research and Technology, 2020, 9(6): 15433-15441.
[10] GUO J J, WANG F, ZHANG S J, et al.Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy[J]. Materials, 2024, 17(2): 468.
[11] XIAO H, XIA X S, HUANG S H, et al.Study on Mechanical Behavior and Microstructure Evolution of Al-Mg-Li Alloy during Electropulsing Assisted Uniaxial Tensile[J]. Journal of Alloys and Compounds, 2022, 900: 163425.
[12] SUN S D, TANG G Y, SONG G L, et al.Multi-pass Thermo-electropulsing Rolling Improved Mechanical Properties of AZ31 Magnesium Alloy Strips[J]. Russian Journal of Physics, 2013, 9: 53-61.
[13] SUN S D, TANG G Y.Influence of Thermo-Electropulsing Rolling Process on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Strip[J]. Advanced Materials Research, 2013, 744: 375-378.
[14] WEI S, MA P P, CHEN L H, et al.High Density Dislocations Enhance Creep Ageing Response and Mechanical Properties in 2195 Alloy Sheet[J]. Journal of Central South University, 2024, 31(7): 2194-2209.
[15] HAQUE A, SHERBONDY J, WARYWOBA D, et al.Room-Temperature Stress Reduction in Welded Joints through Electropulsing[J]. Journal of Materials Processing Technology, 2022, 299: 117391.
[16] DUTRA J C, RIFFEL K C, SILVA R H G E, et al. A Contribution to the Analysis of the Effects of Pulsed Current in GTAW Welding of 1 mm-Thick AISI 304 Sheets[J]. Metals, 2023, 13(8): 1387.
[17] TANG Z J, AI Y C, XU A J.Investigation into the Local Continuous Heating Calibration Process of a 304 Stainless Steel Pipe by Electrically Assisted Roll Bending[J]. Transactions of the Canadian Society for Mechanical Engineering, 2024, 48(1): 68-74.
[18] WU J W, WANG Z M, ZHU Z G, et al.Effect of Fast-Frequency Pulsed Current Parameters on FFP-TIG Arc Behavior and Its Implications for Inconel 718 Welding[J]. Metals, 2023, 13(5): 848.
[19] NING F K, LE Q C, KONG S P.Effect of Annealing Temperature on Corrosion Properties of Rolled AZ31-Ce Magnesium Alloy[J]. SN Applied Sciences, 2020, 2(4): 762.
[20] ZHANG W Y, ZHANG H, WANG L F, et al.Microstructure Evolution and Mechanical Properties of AZ31 Magnesium Alloy Sheets Prepared by Low-Speed Extrusion with Different Temperature[J]. Crystals, 2020, 10(8): 644.
[21] HUANG Z Q, GUO Y, HUANG R Y, et al.Corrosion and Discharge Behavior of As-Rolled AZ91 Magnesium Alloy after Electro-Pulsing Treatment[J]. Advanced Engineering Materials, 2024, 26(24): 2402026.
[22] YIN F, MA S T, HU S, et al.Understanding the Microstructure Evolution and Mechanical Behavior of Titanium Alloy during Electrically Assisted Plastic Deformation Process[J]. Materials Science and Engineering: A, 2023, 869: 144815.
[23] SONG Y L, WU Y H, LU J, et al.Promoting Dynamic Recrystallization of Al-Zn-Mg-Cu Alloy via Electroshock Treatment[J]. Metals, 2023, 13(5): 944.
[24] 毕广利, 许浩彬, 姜静, 等. 复合加工Mg-Y-Zn-Ni合金的显微组织和性能[J]. 特种铸造及有色合金, 2024, 44(4): 433-440.
BI G L, XU H B, JIANG J, et al.Microstructures and Properties of Mg-Y-Zn-Ni Alloy by Combined Machining[J]. Special Casting & Nonferrous Alloys, 2024, 44(4): 433-440.
[25] TIAN J, DENG J F, SHI Q X, et al.Effect of Temperature Field and Stress Field of Different Crack Behavior on Twins and Dislocations under Mg Alloy Rolling[J]. Materials, 2021, 14(19): 5668.
[26] XU X H, KANG Q X, LIU Y K, et al.Effects of Electropulsing Treatment on the Microstructural Evolution of Hot-Rolled TiBw/TA15 Composite Billet with a Network Architecture[J]. Materials Characterization, 2022, 194: 112341.
[27] VAN IDERSTINE D, MUJAHID S, PAUDEL Y, et al.Effect of Electrical Resistance Heating on Recrystallization of Cold-Rolled Low-Carbon Steel[J]. Crystals, 2023, 13(12): 1650.

基金

国家自然科学基金青年项目(52204396); 国家自然科学基金联合基金项目(U24A20119); 太原科技大学科研启动基金项目(20222087)

PDF(8693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/