波纹界面钛/钢复合板热轧制备与界面组织性能研究

刘锦华, 刘鹏, 栾欠欠, 陈泽军, 夏祥生, 陈强

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 31-40.

PDF(15736 KB)
PDF(15736 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 31-40. DOI: 10.3969/j.issn.1674-6457.2025.07.004
复合材料轧制工艺与装备

波纹界面钛/钢复合板热轧制备与界面组织性能研究

  • 刘锦华1, 刘鹏2, 栾欠欠1, 陈泽军1,*, 夏祥生2, 陈强2
作者信息 +

Hot Roll Bonding Fabrication and Interfacial Microstructure and Properties of Titanium/Steel Clad Plates with Corrugated Interface

  • LIU Jinhua1, LIU Peng2, LUAN Qianqian1, CHEN Zejun1,*, XIA Xiangsheng2, CHEN Qiang2
Author information +
文章历史 +

摘要

目的 研究波-平轧制压下率对高强钛/钢复合板界面形貌、微观组织及界面结合强度的影响规律。方法 采用波-平轧制工艺制备不同压下率波纹界面钛/钢复合板,借助SEM、EBSD技术分析钛/钢复合板界面微观组织特征,通过压缩剪切方式测试钛/钢复合板的剪切强度。结果 通过波-平轧制工艺制备的高强钛/钢复合板界面结合良好,Ti-Fe界面处存在元素扩散现象,并形成一定厚度的扩散层。波纹界面典型区域微观组织分析结果表明,波谷承受了更大程度的变形。不同压下率下钛钢两侧界面处微观组织分析结果表明,在TC4钛合金中,α相经过热轧后形成了不同的择优取向分布,具有明显的织构特征,随着压下率的增加,极密度和位错密度逐渐升高;而钢侧极密度和位错密度则逐渐降低。压缩剪切实验结果表明,轧制压下率为44%、54%和64%的钛/钢复合板的剪切强度分别为359、403、442 MPa。结论 波-平轧制压下率的提高可以使界面产生更强烈的塑性变形进而提高了钛/钢复合板的界面结合质量。

Abstract

The work aims to investigate the effect of corrugated-flat rolling reduction ratio on the interfacial morphology, microstructure, and bonding strength of high-strength titanium/steel clad plates. Titanium/steel clad plates with corrugated interfaces were fabricated through corrugated-flat rolling process under varying reduction ratios. The interfacial microstructure was characterized with Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD), and the interfacial shear strength was evaluated through compression-shear testing. The titanium/steel clad plates prepared by corrugated-flat rolling exhibited good interfacial bonding. Elemental diffusion occurred at the Ti-Fe interface, forming a diffusion layer of measurable thickness. Microstructural analysis of typical regions of the corrugated interface indicated that the wave valleys underwent more severe plastic deformation. On both sides of the interface, EBSD analysis revealed that the α phase in TC4 titanium alloy developed different preferred orientation distributions after hot rolling, exhibiting a clear texture. With the increasing reduction ratio, the pole density and dislocation density in the titanium side gradually increased, while those in the steel side gradually decreased. Compression-shear tests showed that the shear strength of titanium/steel clad plates with reduction ratios of 44%, 54%, and 64% was 359 MPa, 403 MPa, and 442 MPa, respectively. These results indicate that increasing the reduction ratio during corrugated-flat rolling intensifies plastic deformation at the interface, thereby improving the interfacial bonding quality of the titanium/steel clad plates.

关键词

钛/钢复合板 / 波纹界面 / 轧制复合 / 微观组织 / 力学性能

Key words

titanium/steel clad plate / corrugated interface / roll bonding / microstructure / mechanical property

引用本文

导出引用
刘锦华, 刘鹏, 栾欠欠, 陈泽军, 夏祥生, 陈强. 波纹界面钛/钢复合板热轧制备与界面组织性能研究[J]. 精密成形工程. 2025, 17(7): 31-40 https://doi.org/10.3969/j.issn.1674-6457.2025.07.004
LIU Jinhua, LIU Peng, LUAN Qianqian, CHEN Zejun, XIA Xiangsheng, CHEN Qiang. Hot Roll Bonding Fabrication and Interfacial Microstructure and Properties of Titanium/Steel Clad Plates with Corrugated Interface[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 31-40 https://doi.org/10.3969/j.issn.1674-6457.2025.07.004
中图分类号: TG335.8   

参考文献

[1] GUO C H, FAN Q Y, WU Y Y, et al.A Review on Composition Design and Microstructure Analysis of Interlayers in Titanium Alloy/Steel Dissimilar Connections[J]. Materials Today Communications, 2025, 42: 111361.
[2] LI W, KARNATI S, KRIEWALL C, et al.Fabrication and Characterization of a Functionally Graded Material from Ti-6Al-4V to SS316 by Laser Metal Deposition[J]. Additive Manufacturing, 2017, 14: 95-104.
[3] ZHAO Z L, JI H C, ZHONG Y Z, et al.Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet[J]. Materials, 2022, 15(23): 8589.
[4] FATTAH-ALHOSSEINI A, ZAHERI S, KARBASI M.A Review of Corrosion Resistance in Steel Alloys with MOF-Embedded Coatings[J]. Nano-Structures & Nano- Objects, 2024, 40: 101384.
[5] 王恒星, 秦芳诚, 齐会萍, 等. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 206-217.
WANG H X, QIN F C, QI H P, et al.Advances in Simulation and Experimental Study on the Interface Bonding of Bimetallic Layered Components[J]. Materials Reports, 2023, 37(14): 206-217.
[6] 周杰, 史和生, 杨文芬, 等. 金属复合板加工技术的研究现状及发展趋势[J]. 金属世界, 2022(5): 24-30.
ZHOU J, SHI H S, YANG W F, et al.Present Situation and Development of Composition Technics for Metal Clad Plates[J]. Metal World, 2022(5): 24-30.
[7] 夏月庆, 杜强, 郭鹏, 等. 钛/钢异质金属压力焊与钎焊研究进展[J]. 精密成形工程, 2025, 17(3): 67-80.
XIA Y Q, DU Q, GUO P, et al.Research Progress on Pressure Welding and Brazing of Titanium/Steel Dissimilar Metals[J]. Journal of Netshape Forming Engineering, 2025, 17(3): 67-80.
[8] ZHANG J, MA L F, ZHAO G H, et al.Effect of Annealing Temperature on Tensile Fracture Behavior of AZ31/6061 Explosive Composite Plate[J]. Journal of Materials Research and Technology, 2022, 19: 4325-4336.
[9] WANG D Y, CAO X Q, WANG L F, et al.Influence of Hot Rolling on the Interface Microstructure and Mechanical Properties of Explosive Welded Mg/Al Composite Plates[J]. Journal of Materials Research, 2017, 32(4): 863-873.
[10] YANG H K, QIU J, CAO C, et al.Theoretical Design and Experimental Study of the Interlayer of Al/Mg Bimetallic Composite Plate by Solid-Liquid Cast Rolling[J]. Materials Science and Engineering: A, 2022, 835: 142677.
[11] JIANG L Y, XUE Z W, QIAO F Z, et al.Modeling and Analysis of Deformation Characteristics for the Two-Layered Metal Clad Plate Produced by Asymmetric Rolling[J]. Journal of Materials Research and Technology, 2023, 27: 2031-2051.
[12] HUO P D, LI F, NIU W T, et al.Microstructure Characteristics and Corrugation Interface Behavior of Al/Mg/Al Composite Plate Rolled under Large Strain[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 827-838.
[13] 黄庆学. 高品质钢铁板带轧制关键装备与技术研究进展[J]. 机械工程学报, 2023, 59(20): 34-63.
HUANG Q X.Research Progress on Key Equipment and Technology of High Quality Steel Plate and Strip Rolling[J]. Journal of Mechanical Engineering, 2023, 59(20): 34-63.
[14] HAO P J, LIU Y M, WANG Z H, et al.Analysis of Force and Deformation Parameters in Corrugated Clad Rolling[J]. International Journal of Mechanical Sciences, 2023, 243: 108042.
[15] WANG T, LIU W L, LIU Y M, et al.Formation Mechanism of Dynamic Multi-Neutral Points and Cross Shear Zones in Corrugated Rolling of Cu/Al Laminated Composite[J]. Journal of Materials Processing Technology, 2021, 295: 117157.
[16] LIU Y X, LIU Y M, WANG Z H, et al.Stress Analysis and Microstructure Evolution of Cu/Al Composite Plate during Corrugated Rolling[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(5): 1460-1471.
[17] 刘畅. 钛/铝复合板波-平冷轧工艺及组织性能研究[D]. 太原: 太原理工大学, 2020.
LIU C.Corrugated-flat Cold Rolling Process and Microstructure and Properties of Ti/Al Composite Plate[D]. Taiyuan: Taiyuan University of Technology, 2020.
[18] LI S, LUO C, LIU Z D, et al.Interface Characteristics and Mechanical Behavior of Cu/Al Clad Plate Produced by the Corrugated Rolling Technique[J]. Journal of Manufacturing Processes, 2020, 60: 75-85.
[19] WANG T, LI S, NIU H, et al.EBSD Research on the Interfacial Microstructure of the Corrugated Mg/Al Laminated Material[J]. Journal of Materials Research and Technology, 2020, 9(3): 5840-5847.
[20] WANG T, WANG Y L, BIAN L P, et al.Microstructural Evolution and Mechanical Behavior of Mg/Al Laminated Composite Sheet by Novel Corrugated Rolling and Flat Rolling[J]. Materials Science and Engineering: A, 2019, 765: 138318.
[21] GUO X W, REN Z K, MA X B, et al.Effect of Temperature and Reduction Ratio on the Interface Bonding Properties of TC4/304 Plates Manufactured by EA Rolling[J]. Journal of Manufacturing Processes, 2021, 64: 664-673.
[22] 梁子睿, 任路泽, 曹勇, 等. 波纹界面钛/钢复合板抗冲击行为研究[J]. 机械强度, 2025, 47(5): 119-130.
LIANG Z R, REN L Z, CAO Y, et al.Research on Impact Resistance Behavior of Titanium/Steel Composite Plates with the Ripple Interface[J]. Journal of Mechanical Strength, 2025, 47(5): 119-130.
[23] WANG M K, LUO Z A, LI D, et al.Investigation on the Interfacial Microstructure and Mechanical Properties of Ti Alloy/HSLA Steel Clad Plates Fabricated by Vacuum Roll-Cladding[J]. Materials Science and Engineering: A, 2022, 853: 143774.
[24] 梅瑞斌, 史现利, 包立, 等. 多道次热辊轧制Al/Mg层状复合板材结合面特性[J]. 复合材料学报, 2022, 39(7): 3485-3497.
MEI R B, SHI X L, BAO L, et al.Interface Characteristics Study of Al/Mg Laminated Composite Sheets by Multi-Passes RHR[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3485-3497.
[25] 马存强, 侯陇刚, 庄林忠, 等. 铝合金板材同步/异步轧制变形行为有限元分析[J]. 塑性工程学报, 2018, 25(6): 125-132.
MA C Q, HOU L G, ZHUANG L Z, et al.Finite Element Simulation of Deformation Behavior during Conventional and Asymmetric Rolling of Aluminum Alloy Sheet[J]. Journal of Plasticity Engineering, 2018, 25(6): 125-132.
[26] WANG W J, TU Y M, LIU M H, et al.Effect of Inhomogeneous Plastic Deformation on the Interfacial Microstructure and Properties of Titanium/Stainless Steel[J]. Journal of Materials Research and Technology, 2023, 24: 1240-1251.
[27] WANG T, GAO X Y, ZHANG Z X, et al.Interfacial Bonding Mechanism of Cu/Al Composite Plate Produced by Corrugated Cold Roll Bonding[J]. Rare Metals, 2021, 40(5): 1284-1293.

基金

国家基础加强项目(2022-JCJQ-ZD-177-11)

PDF(15736 KB)

Accesses

Citation

Detail

段落导航
相关文章

/