单道次和多道次轧制对Ti-42Al-9V合金板材组织及其影响研究

唐芃, 梁国正, 徐小坤, 张树志, 张新宇, 刘日平

精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 9-20.

PDF(13278 KB)
PDF(13278 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (7) : 9-20. DOI: 10.3969/j.issn.1674-6457.2025.07.002
复合材料轧制工艺与装备

单道次和多道次轧制对Ti-42Al-9V合金板材组织及其影响研究

  • 唐芃, 梁国正, 徐小坤, 张树志, 张新宇, 刘日平
作者信息 +

Microstructure of Ti-42Al-9V Alloy Sheets and Impact of Single Pass and Multiple Pass Rolling

  • TANG Peng, LIANG Guozheng, XU Xiaokun, ZHANG Shuzhi, ZHANG Xinyu, LIU Riping
Author information +
文章历史 +

摘要

目的 对锻态Ti-42Al-9V合金进行单道次和多道次高应变速率轧制,研究2种加工条件下板材的显微组织、变形机理,分析轧制态合金的断裂机理。方法 通过高应变速率轧制技术,探讨了单道次、多道次高应变速率轧制板材的微观组织演变规律和变形机理。结果 Ti-42Al-9V单道次轧制板材主要由针状的β/γ混合组织和块状的α2/γ片层团组成,呈双态组织,在高温下,α相产生了孪晶。多道次板材组织主要由(α/α2+γ)片层团和分布于片层团边界处的残余β相和γ相组成,其组织演化主要与(α/α2+γ)片层团的破碎分解有关,即发生了动态再结晶行为。结论 在单道次高应变速率轧制过程中,块状α相的边界处存在应力集中,容易造成位错堆积,因而动态再结晶往往会优先发生在块状α相的边界处,形成细小的再结晶晶粒。而α2/γ多道次高应变速率轧制板材中的片层团在动态再结晶过程中的变形机制为以下3种方式:片层的球化、孪晶诱发形核、弯曲和扭折。

Abstract

The work aims to conduct single-pass and multi-pass high strain rate rolling processes on forged Ti-42Al-9V alloy and systematically investigate the microstructural characteristics and deformation mechanisms of the sheets under these two processing conditions, along with an in-depth analysis of the fracture mechanisms of the rolled alloy. Through the application of high strain rate rolling technology, the evolution laws of microstructures and the associated deformation mechanisms for both single-pass and multi-pass rolled sheets were thoroughly discussed. In the case of single-pass rolled sheets, the microstructure primarily consisted of a needle-like β/γ mixed structure and blocky α2/γ lamellar clusters, forming a dual-phase structure. Twinning occurred within the α phase at elevated temperatures. For multi-pass rolled sheets, the microstructure was predominantly composed of (α/α2+γ) lamellar clusters, along with residual β and γ phases distributed at the boundaries of these clusters. The microstructural evolution in multi-pass rolling was mainly attributed to the fragmentation and decomposition of (α/α2+γ) lamellar clusters, which led to dynamic recrystallization behavior. During single-pass high strain rate rolling, stress concentration occurs at the boundaries of massive α phases, resulting in dislocation accumulation. Consequently, dynamic recrystallization preferentially initiates at these boundaries, leading to the formation of fine recrystallized grains. The deformation mechanisms of lamellar clusters during the dynamic recrystallization process in multi-pass high strain rate rolled sheets can be categorized into three primary modes of spheroidization of laminates, twinning-induced nucleation, and bending/twisting.

关键词

Ti-42Al-9V合金 / 锻造 / 高应变速率轧制 / 热处理 / 显微组织 / 变形机制

Key words

Ti-42Al-9V alloy / forging / high strain rate rolling / heat treatment / microstructure / deformation mechanism

引用本文

导出引用
唐芃, 梁国正, 徐小坤, 张树志, 张新宇, 刘日平. 单道次和多道次轧制对Ti-42Al-9V合金板材组织及其影响研究[J]. 精密成形工程. 2025, 17(7): 9-20 https://doi.org/10.3969/j.issn.1674-6457.2025.07.002
TANG Peng, LIANG Guozheng, XU Xiaokun, ZHANG Shuzhi, ZHANG Xinyu, LIU Riping. Microstructure of Ti-42Al-9V Alloy Sheets and Impact of Single Pass and Multiple Pass Rolling[J]. Journal of Netshape Forming Engineering. 2025, 17(7): 9-20 https://doi.org/10.3969/j.issn.1674-6457.2025.07.002
中图分类号: TG146   

参考文献

[1] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
CHEN Y Y, YE Y, SUN J F.Present Status for Rolling TiAl Alloy Sheet[J]. Acta Metallurgica Sinica, 2022, 58(8): 965-978.
[2] LASALMONIE A.Intermetallics: Why is it so Difficult to Introduce Them in Gas Turbine Engines[J]. Intermetallics, 2006, 14(10/11): 1123-1129.
[3] DUAN B H, YANG Y C, HE S Y, et al.History and Development of γ-TiAl Alloys and the Effect of Alloying Elements on Their Phase Transformations[J]. Journal of Alloys and Compounds, 2022, 909: 164811.
[4] DIMIDUK D M.Gamma Titanium Aluminide Alloys—An Assessment within the Competition of Aerospace Structural Materials[J]. Materials Science and Engineering: A, 1999, 263(2): 281-288.
[5] GENC O, UNAL R.Development of Gamma Titanium Aluminide (γ-TiAl) Alloys: A Review[J]. Journal of Alloys and Compounds, 2022, 929: 167262.
[6] 朱春雷, 朱小平, 白晓青, 等. 铸造用TiAl母合金制备技术研究进展[J]. 精密成形工程, 2023, 15(8): 72-80.
ZHU C L, ZHU X P, BAI X Q, et al.Research Progress of Manufacture Technology for Cast TiAl Master Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(8): 72-80.
[7] ZHANG K, SUN H L, JIANG X S, et al.Effect of an In-Situ Hybrid Ti2AlC/Graphene Structure on the Damping Properties of TiAl Alloys[J]. Journal of Alloys and Compounds, 2025, 1031: 181062.
[8] WANG S P, ZHU D M, LU Z T, et al.Designing High Ductility TiAl Alloys Based on Dislocation Nucleation Mechanism[J]. Acta Materialia, 2025, 292: 121027.
[9] ERDELY P, STARON P, MAAWAD E, et al.Effect of Hot Rolling and Primary Annealing on the Microstructure and Texture of a β-Stabilised γ-TiAl Based Alloy[J]. Acta Materialia, 2017, 126: 145-153.
[10] WEI B B, TANG B, CHU Y D, et al.The Microstructure Evolution and Tensile Properties of Ti-43Al-4Nb-1Mo- 0.2B Alloy during Hot Rolling[J]. Materials Science and Engineering: A, 2022, 861: 144347.
[11] ZHANG Y, WANG X P, KONG F T, et al.Microstructure, Texture and Mechanical Properties of Ti-43Al-9V- 0.2Y Alloy Hot-Rolled at Various Temperatures[J]. Journal of Alloys and Compounds, 2019, 777: 795-805.
[12] EL KADIRI H, KAPIL J, OPPEDAL A L, et al.The Effect of Twin-Twin Interactions on the Nucleation and Propagation of Twinning in Magnesium[J]. Acta Materialia, 2013, 61(10): 3549-3563.
[13] ZHANG Y, CHANG S, CHEN Y Y, et al.Low-Temperature Superplasticity of β-Stabilized Ti-43Al-9V-Y Alloy Sheet with Bimodal γ-Grain-Size Distribution[J]. Journal of Materials Science & Technology, 2021, 95: 225-236.
[14] ZHANG D D, BAO L Y, LI Q, et al.Microstructure Evolution and Properties of Powder Metallurgy Ti43Al9V0.3Y Alloy Sheets at Different Rolling Temperatures[J]. Materials Science and Engineering: A, 2023, 866: 144685.
[15] YE Y, ZHANG Y, ZHANG S Z, et al.Designing a Hybrid Microstructure of Ti-43Al-9V-0.3Y Alloy and Its Non-Equilibrium Phase Transition Mechanism via Two-Step Forging[J]. Journal of Materials Science & Technology, 2024, 192: 251-264.
[16] HAN J C, ZHANG X L, CAO S Z, et al.Microstructure Evolution and Mechanical Properties of β/γ-TiAl Alloy during High-Rate Near-Isothermal Multidirectional Forging[J]. Materials Science and Engineering: A, 2024, 903: 146648.
[17] ZHANG Y, WANG X P, KONG F T, et al.A High-Performance β-Solidifying TiAl Alloy Sheet: Multi-Type Lamellar Microstructure and Phase Transformation[J]. Materials Characterization, 2018, 138: 136-144.
[18] XU X J, LIN J P, WANG Y L, et al.Effect of Forging on Microstructure and Tensile Properties of Ti-45Al-(8-9) Nb-(W, B, Y) Alloy[J]. Journal of Alloys and Compounds, 2006, 414(1/2): 175-180.
[19] LARSEN D E, CHRISTODOULOU L, KAMPE S L, et al.Investment-Cast Processing of XDTM Near-γ Titanium Aluminides[J]. Materials Science and Engineering: A, 1991, 144(1/2): 45-49.
[20] GERLING R, SCHIMANSKY F P, STARK A, et al.Microstructure and Mechanical Properties of Ti45Al5Nb+ (0-0.5C) Sheets[J]. Intermetallics, 2008, 16(5): 689-697.
[21] GERLING R, BARTELS A, CLEMENS H, et al.Structural Characterization and Tensile Properties of a High Niobium Containing Gamma TiAl Sheet Obtained by Powder Metallurgical Processing[J]. Intermetallics, 2004, 12(3): 275-280.
[22] XU W C, SHAN D B, ZHANG H, et al.Effects of Extrusion Deformation on Microstructure, Mechanical Properties and Hot Workability of β Containing TiAl Alloy[J]. Materials Science and Engineering: A, 2013, 571: 199-206.
[23] WANG Q B, ZHANG S Z, ZHANG C J, et al.Effect of Hot Rolling Temperature on Microstructure Evolution, Deformation Texture and Nanoindentation Properties of an Intermetallic Ti-43Al-9V-0.2Y Alloy[J]. Intermetallics, 2020, 117: 106677.
[24] WANG H L, ZHANG C, LIU X Y, et al.Achieving Enhanced High-Temperature Strength in Ti-48Al-1Fe Alloy Sheets by Direct Hot Pack-Rolling of Powder-Sintered Billets without Cogging[J]. Journal of Materials Processing Technology, 2025, 335: 118669.
[25] PARK J S, YANG G, KIM S W.Effect of Forging Routes on the Microstructure and Mechanical Properties of Newly-Developed Ti-44Al-5.5Nb-0.5W-0.5Cr-0.3Si- 0.1C Alloys[J]. Journal of Alloys and Compounds, 2024, 992: 174442.
[26] PARK J S, YANG G, KIM S W.A High Tensile Strength above 900 ℃ in β-Solidified TiAl Alloy through Alloy Design and Microstructure Optimization[J]. Journal of Alloys and Compounds, 2023, 947: 169676.
[27] CHENG L, QIANG F M, LI J S, et al.Quantitative Evaluation of the Lamellar Kinking&rotation on the Flow Softening of γ-TiAl-Based Alloys at Elevated Temperatures[J]. Materials Letters, 2021, 290: 129458.
[28] JIANG H T, ZENG S W, ZHAO A M, et al.Hot Deformation Behavior of β Phase Containing Γ-TiAl Alloy[J]. Materials Science and Engineering: A, 2016, 661: 160-167

基金

国家自然科学基金(52271118,52071228); 国家科技重大专项(2024ZD0703901); 燕赵黄金台聚才计划骨干人才(教育平台)(HJZD202511)

PDF(13278 KB)

Accesses

Citation

Detail

段落导航
相关文章

/