目的 探明短时热载荷处理对厚规格钢/铝/铝合金复合板界面Fe、Al元素分布和微观组织的影响,从而揭示热载荷对复合板界面结合性能的影响。方法 首先以两道次异温轧制复合法制备出厚度15.32 mm的钢/铝/铝合金复合板,其次采用箱式电阻炉对复合板进行不同温度的短时热载荷处理,最后通过分析复合板界面元素扩散情况、结合性能以及基体组织性能,研究短时热载荷温度参数对厚规格钢/铝/铝合金复合板力学性能和微观组织的影响规律。结果 复合板经不同温度热载荷作用后,Fe、Al元素扩散层厚度未出现明显的差异,均为1.5~1.6 µm,也未生成连续的中间化合物层;随着热载荷温度的升高,复合板的界面剪切和拉脱强度由77 MPa和153 MPa逐渐降低至61 MPa和95 MPa,断裂位置位于中间铝层,均为韧性断裂,而侧弯性能均表现良好,未出现明显缺陷。同时,复合板界面钢侧和铝侧晶粒尺寸也由9.56 µm和4.89 µm逐渐增大至12.54 µm和10.39 µm,复合板铝侧位错密度也随之降低。结论 厚规格钢/铝/铝合金复合板在承受短时热载荷时,结合界面的晶粒尺寸会随着温度的升高而增大,位错密度则是明显降低,这导致复合板的界面剪切和拉脱强度降低。
Abstract
The work aims to investigate the effects of short-term thermal load treatment on the distribution of Fe and Al elements and microstructure at the interface of thick steel/aluminum/aluminum alloy clad plates, and reveal the effect of thermal load on the interfacial bonding properties of the clad plates. Firstly, the steel/aluminum/aluminum alloy composite plate with a thickness of 15.32 mm was prepared by the two-pass different temperature rolling composite method. Secondly, the composite plate was subject to short-term thermal load treatment at different temperature by box resistance furnace. Finally, by analyzing the element diffusion, bonding properties and matrix microstructure properties of the composite plate interface, the effect of short-term thermal load temperature parameters on the mechanical properties and microstructure of the thick steel/aluminum/ aluminum alloy composite plate was studied. After the composite plate was subject to thermal loads at different temperature, there was no significant difference in the thickness of the Fe and Al element diffusion layer, which was between 1.5 μm and 1.6 μm, and no continuous intermediate compound layer was formed. With the increase of thermal load temperature, the interfacial shear and pull-out strength of the composite plate gradually decreased from 77 MPa and 153 MPa to 61 MPa and 95 MPa. The fracture position was located in the middle aluminum layer, which was ductile fracture, while the side bending performance was good and no obvious defects appeared. At the same time, the grain size of the steel side and the aluminum side at the interface of the composite plate also gradually increased from 9.56 μm and 4.89 μm to 12.54 μm and 10.39 μm, and the dislocation density at the aluminum side of the composite plate also decreased. In conclusion, when the thick steel/aluminum/aluminum alloy composite plate is subject to short-term thermal load, the grain size of the bonding interface increases with the increase of temperature, and the dislocation density decreases obviously, which leads to the decrease of the interfacial shear and pull-off strength of the composite plate.
关键词
钢/铝/铝合金复合板 /
短时高温 /
结合性能 /
侧弯性能
Key words
steel/aluminum/aluminum composite plate /
short-time high temperature /
binding performance /
side bending property
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN K, LIU W W, WANG T, et al.Experimental Research on the Technology of Two-Pass Different Temperature Rolling for Thick Steel/Aluminum/Aluminum- Alloy Composite Plate[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(11): 7689-7705.
[2] 李晋. 金属基复合材料的现状与未来发展[J]. 现代盐化工, 2022, 49(2): 22-23.
LI J.Present Situation and Future Development of Metal Matrix Composites[J]. Modern Salt and Chemical Industry, 2022, 49(2): 22-23.
[3] TRICARICO L, SPINA R.Experimental Investigation of Laser Beam Welding of Explosion-Welded Steel/ Aluminum Structural Transition Joints[J]. Materials & Design, 2010, 31(4): 1981-1992.
[4] LIU W W, WANG N J, WANG T, et al.Study on the Influence of Prefabricated Aluminum Layer Technology on the Properties of Corrugated Interface Steel/Aluminum/ Aluminum Alloy Composite Panel[J]. Journal of Materials Engineering and Performance, 2025, 34(7): 6148-6158.
[5] 王涛, 齐艳阳, 刘江林, 等. 金属层合板轧制复合工艺国内外研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 42-56.
WANG T, QI Y Y, LIU J L, et al.Research Progress of Metal Laminates Roll Bonding Process at Home and Abroad[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 42-56.
[6] FU L, XIAO H, YU C, et al.Analysis on Mechanism of Steel Plate Pre-Oxidation in Improving Bonding Properties of Cold-Rolled 6061 Al/Q235 Steel Composite Plate[J]. Journal of Materials Processing Technology, 2023, 316: 117960.
[7] FU L, ZHU Y F, YANG B, et al.Effect of Annealing on Properties of Al/Steel Composite Plates Prepared by Surface Oxidation Treatment before Cold Roll Bonding[J]. Journal of Iron and Steel Research International, 2023, 30(4): 749-759.
[8] 李民权, 张辉, 李落星. 热轧钢/铝复合板结合强度及界面的研究[J]. 热加工工艺, 2008, 37(24): 34-37.
LI M Q, ZHANG H, LI L X.Study on Bonding Strength and Interface of Hot Rolled Steel/Aluminum Metal- Laminate Material[J]. Hot Working Technology, 2008, 37(24): 34-37.
[9] YU C, ZHANG W Z, JIANG R W, et al.Preparation Method and Properties of Q235/5083 Composite Plate with 1060 Interlayer by Differential Temperature Rolling with Induction Heating[J]. Metals, 2023, 13(9): 1501.
[10] 焦宏, 张敏, 闫中建. 两道次热轧法制备钢/铝复合板的结合性能研究[J]. 新技术新工艺, 2015(8): 95-97.
JIAO H, ZHANG M, YAN Z J.Study on Binding Property of Steel/Aluminum Laminated Sheets Fabricated by Two-Pass Hot Rolling[J]. New Technology & New Process, 2015(8): 95-97.
[11] DENG Z J, YU C, XIAO H.Effect of Surface Treatment on Bonding Strength of Hot Rolled Steel Aluminum Clad Plate[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1270(1): 012016.
[12] 黄华贵, 赵阳, 王超, 等. 界面涂层对厚规格热轧钢/铝复合板界面结构与力学性能的影响[J]. 机械工程学报, 2019, 55(14): 30-36.
HUANG H G, ZHAO Y, WANG C, et al.Influence of Plasma Spraying on Interfacial Microstructure and Mechanical Property of Thick Steel/Aluminum Laminated Plate by Hot Rolling[J]. Journal of Mechanical Engineering, 2019, 55(14): 30-36.
[13] 赵亚平, 陈再良. 热处理对汽车用镁/铝复合板的扩散动力学及力学性能的影响[J]. 精密成形工程, 2024, 16(9): 172-180.
ZHAO Y P, CHEN Z L.Effect of Heat Treatment on the Diffusion Kinetics and Mechanical Properties of Mg/Al Composite Plates for Vehicles[J]. Journal of Netshape Forming Engineering, 2024, 16(9): 172-180.
[14] 王世宏, 罗小兵, 苏航, 等. 热处理温度对铝钢复合板界面组织和性能的影响[J]. 钢铁研究学报, 2019, 31(10): 937-945.
WANG S H, LUO X B, SU H, et al.Effect of Heat Treatment Temperature on Interfacial Microstructures and Bonding Properties of Al-Steel Clad Plate[J]. Journal of Iron and Steel Research, 2019, 31(10): 937-945.
[15] PODDAR V S, RATHOD M J.Evaluation of Mechanical Properties of Cold Roll Bonded Mild Steel and Aluminum[J]. Materials Today: Proceedings, 2021, 43: 3014-3022.
[16] HASAN M, HUANG Z Y, ZHAO J W, et al.Microstructural Evaluation of WC and Steel Dissimilar Bilayered Composite Obtained by Spark Plasma Sintering[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(9): 2405-2418.
[17] SAUVAGE X, DINDA G P, WILDE G.Non-Equilibrium Intermixing and Phase Transformation in Severely Deformed Al/Ni Multilayers[J]. Scripta Materialia, 2007, 56(3): 181-184.
[18] CHUNG C Y, ZHU M, MAN C H.Effect of Mechanical Alloying on the Solid State Reaction Processing of Ni-36.5At.% Al Alloy[J]. Intermetallics, 2002, 10(9): 865-871.
[19] 李小兵, 蒋国民, 王强, 等. 钢/铝层状复合板的拉伸力学性能与界面失效过程[J]. 中国有色金属学报, 2021, 31(8): 2125-2135.
LI X B, JIANG G M, WANG Q, et al.Mechanical Properties and Interface Failure Behavior of Steel/Al Laminated Composite Sheets during Tensile Test[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2125-2135.
[20] TRICARICO L, SPINA R, SORGENTE D, et al.Effects of Heat Treatments on Mechanical Properties of Fe/Al Explosion-Welded Structural Transition Joints[J]. Materials & Design, 2009, 30(7): 2693-2700.
[21] KERN M, BERNHARD M, BERNHARD C, et al.Grain Boundary Mobility of γ-Fe in High-Purity Iron during Isothermal Annealing[J]. Scripta Materialia, 2023, 230: 115431.
[22] LIANG S B, WEI C, KE C B.Effect of Anisotropy in Thermal Conductivity on Grain Boundary Migration under Temperature Gradient-a Phase Field Study[J]. Materials Letters, 2021, 303: 130517.
[23] LONG F W, JIANG Q W, XIAO L, et al.Compressive Deformation Behaviors of Coarse- and Ultrafine-Grained Pure Titanium at Different Temperatures: A Comparative Study[J]. Materials Transactions, 2011, 52(8): 1617-1622.
[24] 胡雕, 刘阳, 马旻, 等. 轧制速度对6061/AZ31/6061复合板组织与力学性能的影响[J]. 轻合金加工技术, 2024, 52(2): 33-38.
HU D, LIU Y, MA M, et al.Effect of Rolling Rates on Microstructure and Mechanical Properties of 6061/ AZ31/6061 Composite Plates[J]. Light Alloy Fabrication Technology, 2024, 52(2): 33-38.
[25] LI Y, YANG D Z, YANG W Y, et al.Effect of Annealing Temperature on Microstructure and Properties of Al/Mg Magnetic Pulse Welding Joints[J]. Materials, 2022, 15(16): 5519.
[26] ARSENAULT R J, SHI N.Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion[J]. Materials Science and Engineering, 1986, 81: 175-187.
基金
国家自然科学基金(52005361); 中国博士后科学基金特别资助项目(2023T160474); 中央引导地方科技发展资金项目(YDZJSX2022A022,YDZJSX2022A023)