目的 针对目前全浮式半轴制造工艺存在的锻件余量大、锻件折叠缺陷多等问题,根据某型号全浮式半轴法兰盘的结构特点,提出一种新的短流程近净成形工艺,以提高生产效率,降低生产成本。方法 首先利用高温压缩实验得到全浮式半轴法兰盘所用材料40Cr的真实应力-应变曲线,将数据导入数值模拟软件Deform-3D中,其次,对全浮式半轴法兰盘的短流程近净成形关键工艺参数进行正交实验优化,通过优化得到合理的工艺参数,并对优化后的成形过程进行有限元模拟分析,分析等效应力场分布和模具应力分布等。最后,根据数值模拟结果选择合适设备并进行模具结构设计、加工制造,并进行了相应的工艺试验验证。结果 通过优化得到全浮式半轴法兰盘聚料过程最优的工艺参数组合如下:成形温度为1 150 ℃、成形速度为20 mm/s、摩擦因数为0.3。工艺试验得到的全浮式法兰盘锻件充填饱满,尺寸满足设计要求,经过后续机械加工后,未出现锻造裂纹、折叠等缺陷。结论 本文提出的全浮式法兰盘短流程近净成形工艺是可行的,可为该类零件的现有制造工艺提供指导,且该工艺易于实现自动化生产,从而实现该类零件的绿色高效生产。
Abstract
In response to the problems of large forging allowance and folding defects in the current manufacturing process of fully floating half shafts, the work aims to propose a new short process near net forming technology based on the structural characteristics of a certain model of fully floating half shaft flange, in order to improve production efficiency and reduce production costs. Firstly, the true stress-strain curve of the material 40Cr used for the fully floating half shaft flange was obtained through high-temperature compression experiments. The data were imported into the numerical simulation software Deform-3D. Then, the key process parameters of the short process near net forming of the fully floating half shaft flange were optimized through orthogonal experiments, and reasonable process parameters were obtained through optimization. Finite element simulation analysis was conducted on the optimized forming process to analyze the equivalent stress field distribution and mold stress distribution. Finally, based on the numerical simulation results, the suitable equipment was selected and the mold structure design and manufacturing were carried out. Finally, corresponding process experiments were conducted for verification. The optimal process parameter combination for the aggregation process of the fully floating half shaft flange plate obtained through optimization was forming temperature of 1 150 ℃, forming speed of 20 mm/s, and friction coefficient of 0.3. The fully floating flange forging obtained from the process test was fully filled and met the design requirements in terms of size. After subsequent mechanical processing, there were no defects such as forging cracks or folding. The short process near net forming technology for fully floating flanges proposed is feasible and can provide guidance for the current manufacturing process of such parts. Moreover, this technology is easy to achieve automated production, thereby realizing green and efficient production of such parts.
关键词
全浮式半轴 /
近净成形 /
正交实验 /
数值模拟 /
工艺试验
Key words
fully floating half shaft /
near net forming /
orthogonal experiment /
numerical simulation /
process test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 闫小楼, 邱阳, 李有利. 重卡驱动桥的轻量化设计及应用研究[J]. 机械传动, 2023, 47(6): 148-152.
YAN X L, QIU Y, LI Y L.Lightweight Design and Production Practice of the Heavy Truck Drive Axle[J]. Journal of Mechanical Transmission, 2023, 47(6): 148-152.
[2] 刘玉敏, 谢启盛, 承姿辛, 等. 基于AK-MCS法的新能源电动汽车转向驱动桥空心半轴可靠度分析[J]. 机械设计, 2023, 40(5): 27-35.
LIU Y M, XIE Q S, CHENG Z X, et al.Reliability Analysis on Steering Drive Axle’s Hollow Half Shaft of New-Energy Electric Vehicles Based on AK-MCS Method[J]. Journal of Machine Design, 2023, 40(5): 27-35.
[3] 安杰. 法兰盘半轴的成形[J]. 金属加工(热加工), 2013(13): 58.
AN J.Forming of Flange Half Shaft[J]. MW Metal Forming, 2013(13): 58.
[4] 陈荷, 龚小涛. 汽车半轴热摆辗成形凹模温度场有限元分析[J]. 锻压技术, 2015, 40(9): 125-127.
CHEN H, GONG X T.Finite Element Analysis on Temperature Field of Die for Hot Rotary Rolling of Auto Semi-Axle[J]. Forging & Stamping Technology, 2015, 40(9): 125-127.
[5] 张龙. 大长径比齿轮轴加工工艺方案研究[J]. 汽轮机技术, 2022, 64(2): 159-160.
ZHANG L.Research on Process Planofgear Shaft with Large Length-Diameter Ratio[J]. Turbine Technology, 2022, 64(2): 159-160.
[6] YANG Y Z, FAN L X, XU C. The Microstructure, Texture Evolution and Plasticity Anisotropy of 30SiMn2MoVA High Strength Alloy Steel Tube Processed by Cold Radial Forging[J]. Materials Characterization, 2020, 169: 110641.
[7] AFRASIAB H, HAMZEKOLAEI M G, HASSANI A.New Insight into the Radial Forging Process by an Asymptotic-Based Axisymmetric Analysis[J]. Applied Mathematical Modelling, 2022, 102: 811-827.
[8] PRASAD S V, PRASAD B S VERMA K, et al. The Role and Significance of Magnesium in Modern Day Research-a Review[J]. Journal of Magnesium and Alloys, 2022, 10(1): 1-61.
[9] JIA Y L, QI H P, LI Z J, et al.Influence of Pouring Temperature on Interfacial Bonding of 40Cr/Q345B Bimetallic Ring Blank Produced by Centrifugal Casting[J]. Journal of Materials Engineering and Performance, 2024, 33(7): 3249-3261.
[10] WANG F K, HE H, WANG W L, et al.Mechanism of Crack Propagation during Hot-Rolling Process of a Medium-Carbon 40Cr Alloy Steel[J]. Steel Research International, 2023, 94(10): 2300009.
[11] LI C, DENG S J, SUN H, et al.Optimization of Laser Irradiation Process Parameters for 40Cr Steel Based on back Propagation Neural Network and Genetic Algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2024, 238(1): 160-180.
[12] XIAN A P, SI Z Y.Interlayer Design for Joining Pressureless Sintered Sialon Ceramic and 40Cr Steel Brazing with Ag57Cu38Ti5 Filler Metal[J]. Journal of Materials Science, 1992, 27(6): 1560-1566.
[13] HU L, LANG M W, SHI L X, et al.Study on Hot Deformation Behavior of Homogenized Mg-8.5Gd-4.5Y- 0.8Zn-0.4Zr Alloy Using a Combination of Strain-Compensated Arrhenius Constitutive Model and Finite Element Simulation Method[J]. Journal of Magnesium and Alloys, 2023, 11(3): 1016-1028.
[14] HU H R, QIN J Y, ZHU Y P, et al.Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424.
[15] XIE Y K, WANG Q C, CHEN Z K.Hot Deformation Behavior and Microstructure Evolution of 18CrNiMo7- 6 Gear Steel[J]. Heat Treatment of Metals, 2023, 48(2): 103-109.
[16] 孟致安, 鲁素玲, 闫华军, 等. 超大高径比棒料平锻成形钢拉杆U型头预制坯工艺分析及模拟[J]. 河北科技大学学报, 2021, 42(1): 82-90.
MENG Z A, LU S L, YAN H J, et al.Process Analysis and Simulation of Flat Forging and Forming Steel Tie Rod U-Shaped Head Preforms with Super Large Height-Diameter Ratio Bars[J]. Journal of Hebei University of Science and Technology, 2021, 42(1): 82-90.
[17] JIN L Y, GONG Y D, TAN X F, et al.A New Method for Preparing Ultra-Large Aspect Ratio Microcylindrical Electrode Array by EDM[J]. Archives of Civil and Mechanical Engineering, 2024, 24(4): 205.
[18] 李波, 何芬, 谢彬, 等. 汽轮机用法兰镦锻成形与模具设计[J]. 模具工业, 2022, 48(5): 58-60.
LI B, HE F, XIE B, et al.Upsetting Forming of Steam Turbine Flange and the Die Design[J]. Die & Mould Industry, 2022, 48(5): 58-60.
[19] 汤涛, 王熔. GH4169合金十二角头螺栓热镦成形数值仿真及参数优化[J]. 锻压技术, 2021, 46(12): 20-26.
TANG T, WANG R.Numerical Simulation and Parameter Optimization on Hot Upsetting for GH4169 Alloy Dodecagonal Head Bolt[J]. Forging & Stamping Technology, 2021, 46(12): 20-26.
[20] 刘乐, 殷银银, 金宏, 等. 行星齿轮架中空多向锻造工艺及模具设计[J]. 制造技术与机床, 2022(6): 140-146.
LIU L, YIN Y Y, JIN H, et al.Multi Direction Forging Process and Die Design of Hollow Planetary Carrier[J]. Manufacturing Technology & Machine Tool, 2022(6): 140-146.
[21] 高国杰, 马辉, 秦伟超, 等. 工艺参数对管端加厚成形影响的数值模拟研究[J]. 重型机械, 2023(1): 60-65.
GAO G J, MA H, QIN W C, et al.Numerical Simulation Researchon the Influence of Process Parameterson Pipe End Upsetting[J]. Heavy Machinery, 2023(1): 60-65.
[22] MYSHECHKIN A A, KRAVCHENKO I N, ZUEV V V, et al.Technological Simulation of the Process of Hot Forging of Two-Layer Forgings with Deep Cavities and an Inverted Cone[J]. Metallurgist, 2024, 68(2): 216-223.
[23] MA J, GAO Q, YANG P, et al.Numerical Simulation of Forging Process of Ultra-High Strength Stainless Steel[J]. Key Engineering Materials, 2022, 922: 123-128.
[24] KIM Y, JEONG H Y, PARK J, et al.Optimizing Process Parameters for Hot Forging of Ti-6242 Alloy: A Machine Learning and FEM Simulation Approach[J]. Journal of Materials Research and Technology, 2023, 27: 8228-8243.
[25] 齐羿, 薛喜云, 焦斐, 等. 盘式转向节锻造工艺优化与过程模拟分析[J]. 锻压技术, 2023, 48(9): 32-40.
QI Y, XUE X Y, JIAO F, et al.Forging Process Optimization and Process Simulation Analysis on Disc Steering Knuckle[J]. Forging & Stamping Technology, 2023, 48(9): 32-40.
[26] AFRASIAB H, HAMZEKOLAEI M G, HASSANI A.New Insight into the Radial Forging Process by an Asymptotic-Based Axisymmetric Analysis[J]. Applied Mathematical Modelling, 2022, 102: 811-827.
基金
河南省高等学校重点科研项目(24B430021)