目的 探究激光功率及扫描速度对激光熔融沉积(LMD)GH4169合金熔池宏观形貌及微观组织的影响,获得最佳工艺参数。方法 基于COMSOL软件建立了LMD温度场数值模型,对不同工艺方案LMD过程的温度场开展数值模拟研究,探究激光功率和扫描速度对沉积层熔宽、熔高、宽高比以及稀释率的影响规律。通过控制变量法,开展LMD单道沉积实验,分析激光功率和扫描速度对沉积层微观组织及Laves相形貌的影响规律。结果 随着激光功率的增大,一次枝晶臂间距(PDAS)逐渐增大,Laves相由颗粒状转变为块状或长链状;随着扫描速度的增大,PDAS逐渐减小,Laves相由块状或长链状转变成颗粒状。当激光功率为1 400 W、扫描速度为6 mm/s时,LMD过程中熔池内的最高温度约为2 750 K,熔宽约为2 976 μm,熔高约为833 μm,宽高比约为3.57,稀释率约为38.5%,沉积层的平均硬度约为266.36HV,室温和高温条件下试样的屈服强度约为623.60 MPa和581.66 MPa,抗拉强度约为955.92 MPa和823.83 MPa,延伸率约为39.08%和24.60%。结论 实验结果与模拟结果吻合较好,验证了本文所建立模型的准确性。熔宽和熔高与激光功率呈正相关性,与扫描速度呈负相关性;宽高比和稀释率与激光功率和扫描速度呈正相关性。当激光功率为1 400 W、扫描速度为6 mm/s时,所制备的GH4169合金试样的力学性能较好。
Abstract
The work aims to investigate the effects of laser power and scanning rate on the shape of the molten pool and the microstructure morphology of laser melting deposition (LMD) GH4169 alloy, to obtain the best process parameters. A temperature field numerical model of the laser melting deposition process was established based on COMSOL software. The temperature fields under different schemes were simulated during the LMD process, and the effects of laser power and scanning rate on the width, height, ratio and dilution rate of the deposition layer were studied. The effects of laser power and scanning rate on the microstructure morphology and Laves-phase was analyzed by using the simple variable method to carry out LMD single-pass deposition experiment. As the laser power increased, the primary dendrite arm spacing (PDAS) gradually increased, and the shape of Laves-phase changed from granular to block or long chain. However, the PDAS decreased with an increase in scanning rate, and the Laves-phase changed from block or long chain to granular. When the laser power was 1 400 W and the scanning rate was 6 mm/s, the maximum temperature of the molten pool was about 2 750 K, the width and height of the molten pool were approximately 2 976 μm and 833 μm, respectively, and the aspect ratio was about 3.57, and the dilution rate was about 38.5%, and the average hardness of the deposition layer was about 266.36HV. Moreover, at room temperature and high temperature, the yield strength of the specimens was about 623.60 MPa and 581.66 MPa, the ultimate tensile strength was about 955.92 MPa and 823.83 MPa, and the elongation was about 39.08% and 24.60%. The experiment results agree well with the simulation results, verifying the accuracy of the model proposed. The width and height of the molten pool are negatively correlated with the laser power and scanning rate, but the aspect ratio and the dilution rate are positively correlated with the laser power and scanning rate. The mechanical properties of the GH4169 alloy specimens are better when the laser power and scanning rate are 1 400 W and 6 mm/s.
关键词
激光熔融沉积 /
工艺参数 /
数值模拟 /
熔池形态 /
微观组织
Key words
laser melting deposition /
process parameters /
numerical simulation /
molten pool shape /
microstructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄云, 李少川, 肖贵坚, 等. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报, 2021, 41(4): 17-35.
HUANG Y, LI S C, XIAO G J, et al.Research Progress of Aero-Engine Blade Materials and Anti-Fatigue Grinding Technology[J]. Journal of Aeronautical Materials, 2021, 41(4): 17-35.
[2] 中国航空材料手册编辑委员会编. 中国航空材料手册-变形高温合金、铸造高温合金[M]. 北京: 中国标准出版社, 2011.
Editorial Committee of the Chinese Aeronautical Materials Handbook. Chinese Aeronautical Materials Handbook-Deformed High-Temperature Alloys, Cast High Temperature Alloys[M]. Beijing: China Standard Press, 2011.
[3] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55.
GU D D, ZHANG H M, CHEN H Y, et al.Laser Additive Manufacturing of High-Performance Metallic Aerospace Components[J]. Chinese Journal of Lasers, 2020, 47(5): 32-55.
[4] CHEN S J, HE Z, XIAO J, et al.Modified Heat Treatment and Related Microstructure-Mechanical Property Evolution of Arc Melting Additively Manufactured GH4169 Ni-Based Superalloy[J]. Journal of Alloys and Compounds, 2023, 947: 169449.
[5] CHANG B Q, YI Z X, DUAN J, et al.Microstructure Evolution Characterization of GH4169 Superalloy under Ultrasonic High-Frequency Vibration Energy[J]. Materials Characterization, 2023, 198: 112717.
[6] 陈娇, 罗桦, 贺戬, 等. 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成形工程, 2023, 15(1): 156-169.
CHEN J, LUO H, HE J, et al.Research Status of Nickel-Based Superalloy for Aerospace Field and Its Laser Additive Manufacturing Technology[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 156-169.
[7] 刘春泉, 熊芬, 彭龙生, 等. 超高速激光熔覆技术的最新研究进展: 关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 176-194.
LIU C Q, XIONG F, PENG L S, et al.The Latest Research Progress of Extreme High-Speed Laser Material Deposition: Key Technical Features and Advantages, Equipment Development and Technical Parameters[J]. Materials Reports, 2024, 38(17): 176-194.
[8] 段景体. 同轴送粉激光增材过程热-力耦合仿真研究[D]. 大连: 大连交通大学, 2022.
DUAN J T.Study on the Thermal-Mechanical Coupling Simulation of Coaxial Powder Feeding Laser Additive Manufacturing Process[D]. Dalian: Dalian Jiaotong University, 2022.
[9] YUAN W Y, LI R F, CHEN Z H, et al.A Comparative Study on Microstructure and Properties of Traditional Laser Cladding and High-Speed Laser Cladding of Ni45 Alloy Coatings[J]. Surface and Coatings Technology, 2021, 405: 126582.
[10] GOODARZI D M, PEKKARINEN J, SALMINEN A.Analysis of Laser Cladding Process Parameter Influence on the Clad Bead Geometry[J]. Welding in the World, 2017, 61(5): 883-891.
[11] 童文辉, 张新元, 李为轩, 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
TONG W H, ZHANG X Y, LI W X, et al.Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. Acta Metallurgica Sinica, 2020, 56(9): 1265-1274.
[12] JU J, ZHOU Y, KANG M D, et al.Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe-Based Alloy on 42CrMo Steel Roller[J]. Materials, 2018, 11(10): 2061.
[13] MENG G R, ZHU L D, ZHANG J D, et al.Statistical Analysis and Multi-Objective Process Optimization of Laser Cladding TiC-Inconel718 Composite Coating[J]. Optik, 2021, 240: 166828.
[14] GUO C G, HE S Z, YUE H T, et al.Prediction Modelling and Process Optimization for Forming Multi-Layer Cladding Structures with Laser Directed Energy Deposition[J]. Optics & Laser Technology, 2021, 134: 106607.
[15] 杨丹, 宁玉恒, 赵宇光, 等. 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 材料导报, 2017, 31(24): 133-140.
YANG D, NING Y H, ZHAO Y G, et al.Influence of Processing Parameter on Microstructure, Wear-Resistance and Corrosion-Resistance of Laser Cladding Ni-Based Alloy on the Surface of 304 Stainless Steel[J]. Materials Review, 2017, 31(24): 133-140.
[16] 李杰帅. 激光熔化沉积GH4169合金的工艺与力学性能研究[D]. 吉林: 东北电力大学, 2023.
LI J S.Study of Process and Mechanical Propeities of GH4169 Alloy by Laser Metal Deposition[D]. Jilin: Northeast Dianli University, 2023.
[17] VÁSQUEZ F, RAMOS-GREZ J A, WALCZAK M. Multiphysics Simulation of Laser-Material Interaction during Laser Powder Depositon[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9): 1037-1045.
[18] GAO J L, WU C Z, HAO Y B, et al.Numerical Simulation and Experimental Investigation on Three-Dimensional Modelling of Single-Track Geometry and Temperature Evolution by Laser Cladding[J]. Optics & Laser Technology, 2020, 129: 106287.
[19] 赵盛举, 祁文军, 黄艳华, 等. TC4表面激光熔覆Ni60基涂层温度场热循环特性数值模拟研究[J]. 表面技术, 2020, 49(2): 301-308.
ZHAO S J, QI W J, HUANG Y H, et al.Numerical Simulation Study on Thermal Cycle Characteristics of Temperature Field of TC4 Surface Laser Cladding Ni60 Based Coating[J]. Surface Technology, 2020, 49(2): 301-308.
[20] 李伦翔, 张德强, 李金华, 等. 激光熔覆镍基合金形貌优化及残余应力分析[J]. 激光与光电子学进展, 2020, 57(17): 211-220.
LI L X, ZHANG D Q, LI J H, et al.Residual Stress Analysis and Shape Optimization of Laser Cladded Ni-Based Alloy Coatings[J]. Laser & Optoelectronics Progress, 2020, 57(17): 211-220.
[21] 黄国顺, 金康宁, 陈平. 激光熔覆IN718合金温度场和应力场数值模拟[J]. 润滑与密封, 2022, 47(11): 75-81.
HUANG G S, JIN K N, CHEN P.Numerical Simulation of Temperature and Stress Fields of Laser Cladding IN718 Alloy[J]. Lubrication Engineering, 2022, 47(11): 75-81.
[22] 张杰, 张群莉, 姚建华, 等. 激光熔覆IN718合金工艺优化及界面组织性能分析[J]. 中国激光, 2022, 49(16): 204-213.
ZHANG J, ZHANG Q L, YAO J H, et al.Process Optimization and Interfacial Microstructure and Properties Analysis of Laser Cladded IN718 Alloy[J]. Chinese Journal of Lasers, 2022, 49(16): 204-213.
[23] 李金华, 安学甲, 姚芳萍, 等. H13钢激光熔覆Ni基涂层热应力循环的仿真研究[J]. 中国激光, 2021, 48(10): 33-40.
LI J H, AN X J, YAO F P, et al.Simulation on Thermal Stress Cycle in Laser Cladding of H13 Steel Ni-Based Coating[J]. Chinese Journal of Lasers, 2021, 48(10): 33-40.
[24] WANG L F, ZHU G X, SHI T, et al.Laser Direct Metal Deposition Process of Thin-Walled Parts Using Variable Spot by Inside-Beam Powder Feeding[J]. Rapid Prototyping Journal, 2018, 24(1): 18-27.
[25] 盖欣, 陈浩瀚, 丁涛, 等. In625镍基合金激光熔覆工艺研究[J]. 科学技术创新, 2023(22): 1-6.
GAI X, CHEN H H, DING T, et al.Research on the Laser Cladding Parameters of In625 Nickel Base Alloy[J]. Scientific and Technological Innovation, 2023(22): 1-6.
[26] XIAO H, LIU X Y, XIAO W J, et al.Influence of Molten-Pool Cooling Rate on Solidification Structure and Mechanical Property of Laser Additive Manufactured Inconel 718[J]. Journal of Materials Research and Technology, 2022, 19: 4404-4416.
[27] ZHANG J, ZHANG Q L, CHEN Z J, et al.Experimental and Statistical Analyses of Geometry Characteristics of Inconel 718 Laser Clad Layer with Response Surface Methodology[J]. Journal of Laser Applications, 2019, 31(3): 032016.
[28] 吴军, 朱冬冬, 杨日初, 等. 45钢轴面激光熔覆Ni60AA涂层工艺参数优化及摩擦磨损性能研究[J]. 激光与光电子学进展, 2021, 58(11): 304-314.
WU J, ZHU D D, YANG R C, et al.Parameters Optimization and Friction and Wear Properties for Laser Cladding Ni60AA Coating on 45 Steel Shaft Surface[J]. Laser & Optoelectronics Progress, 2021, 58(11): 304-314.
[29] 隋尚. Laves相对激光立体成形GH4169高温合金力学性能的影响[D]. 西安: 西北工业大学, 2019.
SUI S.Influence of Laves Phase on the Mechanical Properties of GH4169 Superalloy Fabricated by Laser Solid Forming[D]. Xi'an: Northwestern Polytechnical University, 2019.
[30] MANIKANDAN S G K, SIVAKUMAR D, RAO K P, et al. Microstructural Characterization of Liquid Nitrogen Cooled Alloy 718 Fusion Zone[J]. Journal of Materials Processing Technology, 2014, 214(12): 3141-3149.
[31] 张杰, 张群莉, 姚建华, 等. 激光熔覆工艺参数对IN718合金组织及元素偏析的影响[J]. 热加工工艺, 2022, 51(19): 30-34.
ZHANG J, ZHANG Q L, YAO J H, et al.Effect of Laser Cladding Process Parameters on Microstructure and Element Segregation of IN718 Alloy[J]. Hot Working Technology, 2022, 51(19): 30-34.
[32] 王凯博, 吕耀辉, 刘玉欣, 等. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响[J]. 材料导报, 2017, 31(14): 100-104.
WANG K B, LYU Y H, LIU Y X, et al.Influence of Heat Input on Microstructure and Mechanical Property of Pulsed Plasma Arc Additive Manufactured Inconel 718 Superalloy[J]. Materials Review, 2017, 31(14): 100-104.
[33] 赵云梅, 赵洪泽, 吴杰, 等. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
ZHAO Y M, ZHAO H Z, WU J, et al.Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 184-192.
基金
河南省科技攻关计划(242102220086); 河南省高校科技创新人才支持计划(22HASTIT031)