热处理对205B铝合金激光-CMT复合增材成形件组织及性能的影响

牛晨旭, 张嘉, 吕蒙, 郭海伟, 杨丰豪

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 187-196.

PDF(6152 KB)
PDF(6152 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 187-196. DOI: 10.3969/j.issn.1674-6457.2025.06.020
轻合金成形

热处理对205B铝合金激光-CMT复合增材成形件组织及性能的影响

  • 牛晨旭1, 张嘉1, 吕蒙1,2, 郭海伟1,2*, 杨丰豪3
作者信息 +

Effect of Heat Treatment on Microstructure and Properties of Laser-CMT Composite Additively Formed Parts of 205B Aluminium Alloy

  • NIU Chenxu1, ZHANG Jia1, LYU Meng1,2, GUO Haiwei1,2*, YANG Fenghao3
Author information +
文章历史 +

摘要

目的 针对205B增材制造成形件存在组织均匀性差、强度低和力学性能各向异性大等缺陷问题,对其进行了热处理以期改善合金的相关性能。方法 以激光-电弧(CMT)复合增材205B铝合金为研究对象,采用固溶淬火+时效热处理的研究方法,对不同热处理工艺下材料的宏微观组织形貌、第二相分布、显微硬度及拉伸强度进行表征。结果 随固溶时间的延长,晶界处α+θ共晶组织逐渐消失,Cu元素固溶到Al基体中;当固溶时间为120 min时,材料的显微硬度、横向和纵向平均拉伸强度分别为152.48HV、439.51 MPa、429.15 MPa。随时效时间的延长,晶内T相不断长大和聚集,并形成“黑色块状物质”;且试样的显微硬度、横向和纵向拉伸强度均随固溶时间的延长呈现出先上升后下降的趋势,当时效时间为360 min时,材料获得了最佳的力学性能(硬度154.67HV、横向拉伸强度448.05 MPa、纵向拉伸强度435.59 MPa)。结论 采用固溶淬火+时效热处理的方法能有效改善复合增材205B铝合金宏微观组织的均匀性,且能大幅提高其硬度并降低拉伸强度的各向异性。

Abstract

The work aims to conduct heat treatment on additively formed parts of 205B aluminium alloy of poor tissue uniformity, low strength and large anisotropy of mechanical properties, so as to improve the properties of the alloy. Solid solution quenching+aging heat treatment method was adopted and the macro-microstructure morphology, second phase distribution, micro-hardness and tensile strength of laser-arc (CMT) composite additive 205B aluminum alloy under different treatment processes were characterized. With the increase of solid solution time, the α+θ eutectic organization at the grain boundary gradually disappeared, and the Cu element was solidly dissolved into the Al matrix; When the solid solution time was 120 min, the micro-hardness, transverse tensile strength, and longitudinal tensile strength of the material were 152.48HV, 439.51 MPa, and 429.15 MPa, respectively. With the prolongation of aging time, the T-phase in the crystal continued to grow and aggregate, forming “black lumps”; The micro-hardness, transverse tensile strength and longitudinal tensile strength of the specimen showed a trend of first increasing and then decreasing with the increase in solid solution time. When the aging time is 360 min, the material obtained the best mechanical properties (hardness of 154.67HV, transverse tensile strength of 448.05 MPa, longitudinal tensile strength of 435.59 MPa). The use of solid solution quenching+aging heat treatment method can effectively improve the macro-microstructure uniformity of 205B aluminum alloy obtained by composite additive and can significantly increase its hardness and reduce the tensile strength anisotropy.

关键词

205B铝合金 / 固溶淬火 / 时效热处理 / 组织均匀性 / 各向异性

Key words

205B aluminum alloy / solid solution quenching / aging heat treatment / uniformity / anisotropy

引用本文

导出引用
牛晨旭, 张嘉, 吕蒙, 郭海伟, 杨丰豪. 热处理对205B铝合金激光-CMT复合增材成形件组织及性能的影响[J]. 精密成形工程. 2025, 17(6): 187-196 https://doi.org/10.3969/j.issn.1674-6457.2025.06.020
NIU Chenxu, ZHANG Jia, LYU Meng, GUO Haiwei, YANG Fenghao. Effect of Heat Treatment on Microstructure and Properties of Laser-CMT Composite Additively Formed Parts of 205B Aluminium Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 187-196 https://doi.org/10.3969/j.issn.1674-6457.2025.06.020
中图分类号: TG457.14   

参考文献

[1] 王俊升, 薛程鹏, 王硕, 等. 轻质金属的发展和应用: 高强铝合金和镁合金[J]. 特种铸造及有色合金, 2023, 43(2): 145-152.
WANG J S, XUE C P, WANG S, et al.Development and Applications of LightweightMetal: High-Strength Al and MgAlloys[J]. Special Casting & Nonferrous Alloys, 2023, 43(2): 145-152.
[2] SILCOCK J M, FLOWER H M.Comments on a Comparison of Early and Recent Work on the Effect of Trace Additions of Cd, In, or Sn on Nucleation and Growth of θ′ in Al-Cu Alloys[J]. Scripta Materialia, 2002, 46(5): 389-394.
[3] KHORASANI M, GHASEMI A, ROLFE B, et al.Additive Manufacturing a Powerful Tool for the Aerospace Industry[J]. Rapid Prototyping Journal, 2022, 28(1): 87-100.
[4] 邓佳明, 朱茜, 陈浩铭, 等. 增材制造复杂流道水冷电机壳体对驱动电机持续功率影响的研究[J]. 精密成形工程, 2024, 16(2): 174-181.
DENG J M, ZHU Q, CHEN H M, et al.Influence of Additive Manufacturing Complex Flow Channel Water-cooled Housing on Continuous Rating of Drive Motor[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 174-181.
[5] ZHANG G H, LU X F, LI J Q, et al.In-Situ Grain Structure Control in Directed Energy Deposition of Ti6Al4V[J]. Additive Manufacturing, 2022, 55: 102865.
[6] 张立浩, 钱波, 张朝瑞, 等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺, 2022, 30(1): 42-52.
ZHANG L H, QIAN B, ZHANG C R, et al.Summary of Development Trend of Metal Additive Manufacturing Technology[J]. Materials Science and Technology, 2022, 30(1): 42-52.
[7] KENEVISI M S, YU Y F, LIN F.A Review on Additive Manufacturing of Al-Cu (2xxx) Aluminium Alloys, Processes and Defects[J]. Materials Science and Technology, 2021, 37(9): 805-829.
[8] XU M, ZHANG H D, YUAN T, et al.Microstructural Characteristics and Cracking Mechanism of Al-Cu Alloys in Wire Arc Additive Manufacturing[J]. Materials Characterization, 2023, 197: 112677.
[9] GU J L, DING J L, WILLIAMS S W, et al.The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al-6.3Cu Alloy[J]. Materials Science and Engineering: A, 2016, 651: 18-26.
[10] CHEN Y H, XU M F, ZHANG T M, et al.Grain Refinement and Mechanical Properties Improvement of Inconel 625 Alloy Fabricated by Ultrasonic-Assisted Wire and Arc Additive Manufacturing[J]. Journal of Alloys and Compounds, 2022, 910: 164957.
[11] 武永, 邓威, 刘恺, 等. 层间超声冲击对TIG电弧增材制造2219铝合金组织和力学性能的影响[J]. 航空科学技术, 2021, 32(11): 80-86.
WU Y, DENG W, LIU K, et al.Effect of Interlayer Ultrasonic Peening on the Microstructure and Mechanical Properties of 2219 Aluminum Alloy by TIG Wire Arc Additive Manufacturing[J]. Aeronautical Science & Technology, 2021,32(11): 80-86.
[12] FU R, TANG S Y, LU J P, et al.Hot-Wire Arc Additive Manufacturing of Aluminum Alloy with Reduced Porosity and High Deposition Rate[J]. Materials & Design, 2021, 199: 109370.
[13] JIN P, LIU Y B, LI F X, et al.Realization of Synergistic Enhancement for Fracture Strength and Ductility by Adding TiC Particles in Wire and Arc Additive Manufacturing 2219 Aluminium Alloy[J]. Composites Part B: Engineering, 2021, 219: 108921.
[14] 杨光, 邹文北, 王超, 等. 激光增材连接异质铝合金的组织及性能研究[J]. 中国激光, 2022, 49(22): 2202010.
YANG G, ZOU W B, WANG C, et al.Microstructure and Properties of Laser Additive Jointing Heterogeneous Aluminum Alloys[J]. Chinese Journal of Lasers, 2022, 49(22): 2202010.
[15] 赵俊鹏, 刘长军, 刘子奇, 等. 激光-CMT复合焊接内涵、研究现状与展望[J]. 应用激光, 2022, 42(9): 1-11.
ZHAO J P, LIU C J, LIU Z Q, et al.Connotation, Research Status and Expectation of Laser-CMT HybridWelding[J]. Applied Laser, 2022, 42(9): 1-11.
[16] 张禄中, 王晓南, 陈夏明, 等. 激光功率对高强Al- Mg-Si-Cu合金激光-CMT复合焊接接头组织性能的影响[J]. 中国激光, 2023, 50(4): 135-143.
ZHANG L Z, WANG X N, CHEN X M, et al.Effect of Laser Power on Microstructure and Properties of High Strength Al-Mg-Si-Cu Alloy Laser-CMT Hybrid Welded Joints[J]. Chinese Journal of Lasers, 2023, 50(4): 135-143.
[17] GONG M C, ZHANG S, LU Y, et al.Effects of Laser Power on Texture Evolution and Mechanical Properties of Laser-Arc Hybrid Additive Manufacturing[J]. Additive Manufacturing, 2021, 46: 102201.
[18] WANG Z N, LIN X, WANG L L, et al.Novel High- Strength Al-Cu-Cd Alloy Fabricated by Arc-Directed Energy Deposition: Precipitation Behavior of the Cd Phase and Grain Evolution[J]. Additive Manufacturing, 2022, 60: 103278.
[19] ZHOU S Y, WU K, YANG G, et al.Microstructure and Mechanical Properties of Wire Arc Additively Manufactured 205A High Strength Aluminum Alloy: The Comparison of As-Deposited and T6 Heat-Treated Samples[J]. Materials Characterization, 2022, 189: 111990.
[20] 顾江龙. CMT工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究[D]. 沈阳: 东北大学, 2016.
GU J L.Study on Microstructure and Properties of Al-Cu-(Mg) Alloy Madeby Adding Materials by CMT Process[D]. Shenyang: Northeastern University, 2016.
[21] 李利华, 毛健, 卢锦德, 等. 高强度铸造铝铜合金微观组织对性能的影响[J]. 热加工工艺, 2010, 39(5): 1-3.
LI L H, MAO J, LU J D, et al.Influence of Microstructure on Mechanical Properties of High Strength Cast Aluminum-Copper Alloy[J]. Hot Working Technology, 2010,39(5): 1-3.
[22] 贤福超, 郝启堂, 李新雷, 等. ZL205A合金晶界偏析行为研究[J]. 铸造技术, 2012, 33(12): 1391-1393.
XIAN F C, HAO Q T, LI X L, et al.Study on GrainBoundarySegregationBehavior of ZL205A Alloy[J]. Foundry Technology, 2012, 33(12): 1391-1393.
[23] 张佳琪, 张国伟, 徐宏. Al-Cu合金的热处理工艺研究[J]. 铸造技术, 2016, 37(1): 27-29.
ZHANG J Q, ZHANG G W, XU H.Study on Heat Treatment Process for Al-Cu Alloys[J]. Foundry Technology, 2016, 37(1): 27-29.
[24] 李玉, 张国伟, 徐宏, 等. ZL205A合金热处理工艺研究[J]. 铸造技术, 2017, 38(1): 68-69.
LI Y, ZHANG G W, XU H, et al.Study on Heat Treatment Process for ZL205A Alloy[J]. Foundry Technology, 2017, 38(1): 68-69.
[25] BANUMATHY S, MANDAL R K, SINGH A K.Texture and Anisotropy of a Hot Rolled Ti-16Nb Alloy[J]. Journal of Alloys and Compounds, 2010, 500(2): 325-338.

基金

河南省科技攻关项目(232102231011,222102230025); 河南省教育厅高等学校重点科研项目(23B430016)

PDF(6152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/