目的 针对电弧增材制造铝合金缺陷多、晶粒粗大、力学性能低的难题,采用电弧-搅拌摩擦加工复合增材制造的新工艺,研究层间搅拌摩擦加工对电弧增材制造铝合金温度场与应力场的影响。方法 通过建立铝合金电弧(Wire and Arc Additive Manufacturing, WAAM)-搅拌摩擦加工(Friction Stir Processing, FSP)复合增材的热力耦合模型,对单独电弧增材制造和WAAM-FSP复合增材过程中的温度场和应力场进行对比,分析层间FSP对电弧增材制造铝合金温度场和应力场的影响。结果 在WAAM过程中,2319铝合金最高温度达到1 575 ℃;在堆积下一道次时,前一道增材层峰值温度超过2319铝合金的液相线,使增材层发生部分重熔。层间FSP使增材试样峰值温度由1 575 ℃升高至1 619 ℃,在第一层增材时,层间FSP使工件的温度升高至约395 ℃。后续电弧增材及层间FSP对已增材层产生的温升影响随层数的增加而降低。此外,引入层间FSP后,增材构件起弧端、基板与堆积层交界处的应力集中面积减小,使熔敷层内峰值应力值降低约20 MPa。结论 层间搅拌摩擦加工可降低增材工件的冷却速度以及温度梯度,同时层间FSP过程中产生的热力耦合作用使增材构件中的应力分布更均匀,解决了增材件中应力集中的问题。
Abstract
Specific to the common problems such as many defects, coarse grains and low mechanical properties in aluminum alloy by arc additive manufacturing, the work aims to adopt a new technology of wire arc addictive manufacturing (WAAM) and friction stir processing (FSP) to study the effect of interlayer FSP on the temperature and stress fields of WAAM Al alloy. By establishing a thermo-mechanical coupling model of WAAM-FSP hybrid AM method, the temperature and stress fields during WAAM and WAAM-FSP process were studied for comparison, and the effect of interlayer FSP on the temperature and stress fields of WAAM aluminum alloy was analyzed. The maximum temperature of 2319 aluminum alloy during WAAM process reached 1 575 ℃. During deposition of the next layer, the peak temperature of the previous additive layer exceeded the liquidus line of the 2319 aluminum alloy, causing the additive layer to partially remelt. The peak temperature of the additive specimen increased from 1 575 ℃ to 1 619 ℃ by the interlayer FSP. In addition, the temperature of the firstly deposited layer reached around 395 ℃ after interlayer FSP. The effect of subsequent WAAM process and interlayer FSP on the temperature rise of the additive layers decreased with the increase of the number of layers. Secondly, by introducing interlayer FSP, the stress concentration area between the deposited layers and the substrate was reduced, and the peak stress in the deposited layer was reduced by about 20 MPa. The interlayer FSP can decrease the cooling rate and temperature gradient of aluminum alloy produced by WAAM. At the same time, the thermal-mechanical coupling in the process of interlayer FSP makes the stress distribution in the additive more uniform, which solves the problem of stress concentration in the additive.
关键词
铝合金 /
电弧-搅拌摩擦加工复合增材 /
数值模拟 /
温度场 /
应力场
Key words
Al alloy /
WAAM-FSP hybrid additive manufacturing /
numerical simulation /
temperature field /
stress field
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郝轩, 黄永德, 陈伟, 等. 基于CMT技术的铝合金电弧增材制造研究现状[J]. 精密成形工程, 2018, 10(5): 88-94.
HAO X, HUANG Y D, CHEN W, et al.Research Status of the Aluminium Alloy Arc Additive Manufacturing Technology Based on the CMT[J]. Journal of Netshape Forming Engineering, 2018, 10(5): 88-94.
[2] 石寅晖, 李洁, 刘坤, 等. 铝合金电弧熔丝增材制造的冶金缺陷研究现状与展望[J]. 材料热处理学报, 2023, 44(6): 1-10.
SHI Y H, LI J, LIU K, et al.Research Progress and Prospect of Metallurgical Defects in Wire Arc Additive Manufacturing of Aluminum Alloys[J]. Transactions of Materials and Heat Treatment, 2023, 44(6): 1-10.
[3] 张金田, 王杏华, 王涛. 单道多层电弧增材制造成形控制理论分析[J]. 焊接学报, 2019, 40(12): 63-67.
ZHANG J T, WANG X H, WANG T.Research on Forming Control for Single-Pass Multi-Layer of WAAM[J]. Transactions of the China Welding Institution, 2019, 40(12): 63-67.
[4] 韩启飞, 符瑞, 胡锦龙, 等. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
HAN Q F, FU R, HU J L, et al.Research Progress in Wire Arc Additive Manufacturing of Aluminum Alloys[J]. Journal of Materials Engineering, 2022, 50(4): 62-73.
[5] WU B T, PAN Z X, DING D H, et al.A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement[J]. Journal of Manufacturing Processes, 2018, 35: 127-139.
[6] BUSACHI A, ERKOYUNCU J, COLEGROVE P, et al.Designing a WAAM Based Manufacturing System for Defence Applications[J]. Procedia Cirp, 2015, 37: 48-53.
[7] 李帅贞, 韩晓辉, 毛镇东, 等. 焊前清理对铝合金厚板搅拌摩擦焊接头S线及性能的影响[J]. 电焊机, 2018, 48(3): 80-85.
LI S Z, HAN X H, MAO Z D, et al.Effect of Pre-Welding Cleaning on the S-Line and the Properties of FSW Joints of the Aluminum Alloy Thick Plate[J]. Electric Welding Machine, 2018, 48(3): 80-85.
[8] WANG H J, JIANG W H, OUYANG J H, et al.Rapid Prototyping of 4043 Al-Alloy Parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148(1): 93-102.
[9] CONG B Q, DING J L, WILLIAMS S.Effect of Arc Mode in Cold Metal Transfer Process on Porosity of Additively Manufactured Al-6.3%Cu Alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9): 1593-1606.
[10] 李显, 宋永伦, 卢振洋, 等. 2219铝合金高频耦合脉冲TIG焊接工艺[J]. 焊接学报, 2015, 36(5): 17-20.
LI X, SONG Y L, LU Z Y, et al.High Frequency Energy Coupling Pulsed TIG Welding Process on 2219 Aluminum Alloy[J]. Transactions of the China Welding Institution, 2015, 36(5): 17-20.
[11] 张瑞. 基于CMT的铝合金电弧增材制造(3D打印)技术及工艺研究[D]. 南京: 南京理工大学, 2016.
ZHANG R.Research on Technology and Technology of Aluminum Alloy Arc Additive Manufacturing (3D Printing) Based on CMT[D]. Nanjing: Nanjing University of Science and Technology, 2016.
[12] KAZANAS P, DEHERKAR P, ALMEIDA P, et al.Fabrication of Geometrical Features Using Wire and Arc Additive Manufacture[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6): 1042-1051.
[13] 陈喆. 2319铝合金CMT增材工艺研究[D]. 南京: 南京理工大学, 2019.
CHEN Z.Study on CMT Additive Technology of 2319 Aluminum Alloy[D]. Nanjing: Nanjing University of Science and Technology, 2019.
[14] WANG Q T, WANG X N, CHEN X M, et al.Interactive Effects of Porosity and Microstructure on Strength of 6063 Aluminum Alloy CMT MIX+Synchropulse Welded Joint[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 801-811.
[15] COLEGROVE P A, DONOGHUE J, MARTINA F, et al.Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components[J]. Scripta Materialia, 2017, 135: 111-118.
[16] LI G, QU S G, XIE M X, et al.Effect of Ultrasonic Surface Rolling at Low Temperatures on Surface Layer Microstructure and Properties of HIP Ti-6Al-4V Alloy[J]. Surface and Coatings Technology, 2017, 316: 75-84.
[17] MISHRA R S, MAHONEY M W, MCFADDEN S X, et al.High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy[J]. Scripta Materialia, 1999, 42(2): 163-168.
[18] PENG Y C, ZHANG Q, WEN L Y, et al.An Investigation into Microstructures and Mechanical Properties of 1060 Pure Aluminum during Submerged Friction Stir Processing at a High Rotating Speed[J]. Metals, 2022, 12(2): 201.
[19] 薛鹏, 张星星, 吴利辉, 等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52(10): 1222-1238.
XUE P, ZHANG X X, WU L H, et al.Research Progress on Friction Stir Welding and Processing[J]. Acta Metallurgica Sinica, 2016, 52(10): 1222-1238.
[20] 黄春平, 柯黎明, 邢丽, 等. 搅拌摩擦加工研究进展及前景展望[J]. 稀有金属材料与工程, 2011, 40(1): 183-188.
HUANG C P, KE L M, XING L, et al.Research Progress and Prospect of Friction Stir Processing[J]. Rare Metal Materials and Engineering, 2011, 40(1): 183-188.
[21] WEI J X, HE C S, QIE M F, et al.Achieving High Performance of Wire Arc Additive Manufactured Mg-Y-Nd Alloy Assisted by Interlayer Friction Stir Processing[J]. Journal of Materials Processing Technology, 2023, 311: 117809.
[22] LIU L, XU W H, ZHAO Y Q, et al.Tailoring the Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Al-Mg Alloy via Interlayer Friction Stir Processing[J]. Journal of Materials Research and Technology, 2023, 25: 1055-1068.
[23] 曹熙勇. 铝合金CMT电弧增材制造温度场、应力场及流场数值模拟[D]. 南京: 南京航空航天大学, 2018.
CAO X Y.Numerical Simulation of Temperature Field, Stress Field and Flow Field in CMT Arc Additive Manufacturing of Aluminum Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[24] 郭卫军. 基于CMT的CuAl8增材制造成形及温度场数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.
GUO W J.Numerical Simulation of Manufacturing and Temperature Field of CuAl8 Additive Based on CMT[D]. Harbin: Harbin Institute of Technology, 2020.
[25] 唐成. 铝合金电弧增材制造过程热力特性研究[D]. 西安: 西安理工大学, 2021.
TANG C.Study on Thermal Characteristics of Aluminum Alloy Arc Additive Manufacturing Process[D]. Xi’an: Xi’an University of Technology, 2021.
基金
国家自然科学基金资助项目(52205341); 广东省基础与应用基础研究基金(2021A1515110062); 材料结构精密焊接与连接全国重点实验室开放课题资助(MSWJ-24Z05); 广州市开发区国际科技合作项目(2023GH19)