超声喷丸角度对AZ31B镁合金耐蚀性的影响机理研究

柴彬, 刘震, 刘桂平

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 169-176.

PDF(7224 KB)
PDF(7224 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 169-176. DOI: 10.3969/j.issn.1674-6457.2025.06.018
轻合金成形

超声喷丸角度对AZ31B镁合金耐蚀性的影响机理研究

  • 柴彬1*, 刘震2, 刘桂平3
作者信息 +

Effect Mechanism of Ultrasonic Blasting Angles on the Corrosion Resistance of AZ31B Magnesium Alloy

  • CHAI Bin1*, LIU Zhen2, LIU Guiping3
Author information +
文章历史 +

摘要

目的 探究超声喷丸角度对AZ31B镁合金耐蚀性的影响机理。方法 采用不同的超声喷丸角度对AZ31B镁合金进行了超声喷丸处理,研究了不同喷丸角度对AZ31B镁合金耐蚀性能的影响规律,并通过表征材料的微观组织及表面形貌,分析了喷丸角度对AZ31B镁合金耐蚀性的影响机制。结果 改变超声喷丸角度可以有效改善材料表层的宏观形貌,使材料表层形貌更加平整。超声喷丸角度的降低减小了丸粒对材料表层的冲击作用,缓解了传统超声喷丸在材料表层造成的高应力状态。90°、45°、30°超声喷丸后,试样的稳态开路电势分别为-1.595、-1.552、-1.538 V。结论 3种喷丸角度的处理方式按镁合金开路电位从大到小的顺序依次是30°超声喷丸、45°超声喷丸、90°超声喷丸。喷丸角度的增加有效提高了材料的耐蚀性能,这为进一步提高AZ31B镁合金耐蚀性提供了新方法和借鉴。

Abstract

The work aims to investigate the effect mechanism of ultrasonic blasting angles on the corrosion resistance of AZ31B magnesium alloy. AZ31B Mg alloy was treated by different ultrasonic blasting angles. The effect of different blasting angles on the corrosion resistance of AZ31B Mg alloy was investigated and the mechanism of blasting angles on the corrosion resistance was also analyzed by characterizing the microstructure and surface morphology of the AZ31B Mg alloy. Changing the ultrasonic blasting angle could effectively improve the macroscopic morphology of the surface layer of the material and make the surface morphology of the material more flat. The reduction of the ultrasonic blasting angle decreased the impact of the pellets on the surface layer of the material, thus relieving the high stress state of the material surface layer caused by the large-angle ultrasonic blasting. After ultrasonic blasting at 90°, 45° and 30°, the steady-state open-circuit potential of specimens was -1.595 V, -1.552 V and -1.538 V, respectively. The magnitude of the open-circuit potential of the Mg alloy treated at the three ultrasonic blasting angles is in the following order of 30° ultrasonic blasting, 45° ultrasonic blasting, 90° ultrasonic blasting. The increase of ultrasonic blasting angle effectively improves the corrosion resistance of the material, which provides a new method and reference for improving the corrosion resistance of AZ31B Mg alloy further.

关键词

超声喷丸 / 喷丸角度 / 组织演变 / 表面形貌 / 耐蚀性

Key words

ultrasonic blasting / blasting angle / microstructure evolution / surface morphology / corrosion resistance

引用本文

导出引用
柴彬, 刘震, 刘桂平. 超声喷丸角度对AZ31B镁合金耐蚀性的影响机理研究[J]. 精密成形工程. 2025, 17(6): 169-176 https://doi.org/10.3969/j.issn.1674-6457.2025.06.018
CHAI Bin, LIU Zhen, LIU Guiping. Effect Mechanism of Ultrasonic Blasting Angles on the Corrosion Resistance of AZ31B Magnesium Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 169-176 https://doi.org/10.3969/j.issn.1674-6457.2025.06.018
中图分类号: TG142.2   

参考文献

[1] KHORASHADIZADE F, ABAZARI S, RAJABI M, et al.Overview of Magnesium-Ceramic Composites: Mechanical, Corrosion and Biological Properties[J]. Journal of Materials Research and Technology, 2021, 15: 6034-6066.
[2] BOINOVICH L B, EMELYANENKO K A, EMELYANENKO A M.The Mechanisms and Advances in Magnesium-Based Materials Protection Against Corrosion by the Superhydrophobic Coatings[J]. Surface and Coatings Technology, 2024, 481: 130607.
[3] WILLIAMS G, DAFYDD H A, MCMURRAY H N, et al.The Influence of Arsenic Alloying on the Localised Corrosion Behaviour of Magnesium[J]. Electrochimica Acta, 2016, 219: 401-411.
[4] ZHOU Q Y, LIU S L.Fabrication of Magnesium Phosphate Coating by Electrochemical Cathodic Method for Corrosion Protection of Sintered NdFeB Magnets[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 1200-1206.
[5] LIU B S, LIU X J, WU P P, et al.Microstructure and Corrosion Behavior of a Hot-Rolled Pure Mg after Annealing at Various Temperatures[J]. Materials Today Communications, 2024, 39: 109104.
[6] 曾朝伟, 袁婷, 彭威, 等. 塑性成形方法对镁合金耐蚀性的影响及展望[J]. 精密成形工程, 2023, 15(7): 104-119.
ZENG C W, YUAN T, PENG W, et al.Effect of Plastic Forming Method on Corrosion Resistance of Magnesium Alloy and Its Prospects[J]. Journal of Netshape Forming Engineering, 2023, 15(7): 104-119.
[7] REN C X, WANG Q, ZHANG Z J, et al.Surface Strengthening Behaviors of Four Structural Steels Processed by Surface Spinning Strengthening[J]. Materials Science and Engineering: A, 2017, 704: 262-273.
[8] LIU W B, YANG X F, WAN Z, et al.Surface Strengthening Technology for Mechanical Parts[J]. Surface Review and Letters, 2021, 28(3): 2030006.
[9] 魏梓林, 卞贵学, 王安东, 等. 表面喷丸对Aermet100钢耐蚀性影响[J]. 装备环境工程, 2023, 20(2): 73-81.
WEI Z L, BIAN G X, WANG A D, et al.Effect of Surface Shot Peening on Corrosion Resistance of Aermet100 Steel[J]. Equipment Environmental Engineering, 2023, 20(2): 73-81.
[10] 赵蓉, 吴忠, 刘磊, 等. 喷丸对金属材料耐蚀性能影响的研究进展[J]. 金属热处理, 2018, 43(12): 88-94.
ZHAO R, WU Z, LIU L, et al.Research Progress in Effect of Shot Peening on Corrosion Resistance of Metallic Materials[J]. Heat Treatment of Metals, 2018, 43(12): 88-94.
[11] 刘婷, 孟令刚, 亚斌, 等. 喷丸处理对2219铝合金扩散连接影响研究[J]. 热加工工艺, 2024, 53(11): 95-101.
LIU T, MENG L G, YA B, et al.Study on Effect of Shot Peening on Diffusion Bonding of 2219 Aluminum Alloy[J]. Hot Working Technology, 2024, 53(11): 95-101.
[12] HAN M X, DU J, CHEN Y, et al.Influence of Ultrasonic Shot Peening on the Microstructure and Corrosion Behavior of AZ80M Magnesium Alloy[J]. Journal of Alloys and Compounds, 2024, 980: 173633.
[13] PERAL L B, ZAFRA A, BAGHERIFARD S, et al.Effect of Warm Shot Peening Treatments on Surface Properties and Corrosion Behavior of AZ31 Magnesium Alloy[J]. Surface and Coatings Technology, 2020, 401: 126285.
[14] ZHANG J Y, PENG P, SHE J, et al.A Study of the Corrosion Behavior of AZ31 Mg Alloy in Depth Direction after Surface Nanocrystallization[J]. Surface and Coatings Technology, 2020, 396: 125968.
[15] SILVA R M P, MILAGRE M X, IZQUIERDO J, et al. Surface Finishing Effects on the Corrosion Behavior and Electrochemical Activity of 2098-T351 Aluminum Alloy Investigated Using Scanning Microelectrochemical Techniques[J]. Materials Characterization, 2022, 191: 112130.
[16] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
HUANG J F, SONG G L.Research Progress on Corrosion Testing and Analysis of Mg-Alloys[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(3): 519-528.
[17] GOMES M P, COSTA I, PÉBÈRE N, et al. On the Corrosion Mechanism of Mg Investigated by Electrochemical Impedance Spectroscopy[J]. Electrochimica Acta, 2019, 306: 61-70.
[18] 杜娟, 邓森, 李杰, 等. 超声喷丸对变形镁合金AZ80M腐蚀行为的影响[J]. 特种铸造及有色合金, 2023, 43(5): 669-675.
DU J, DENG S, LI J, et al.Effects of Ultrasonic Shot Peening on Corrosion Behavior of AZ80M Alloy[J]. Special Casting & Nonferrous Alloys, 2023, 43(5): 669-675.
[19] 李坤, 张创创, 龚虎虎, 等. 超声喷丸对6061铝合金耐腐蚀性能的影响[J]. 黑龙江工业学院学报(综合版), 2023, 23(8): 133-140.
LI K, ZHANG C C, GONG H H, et al.Effect of Ultrasonic Shot Peening on Corrosion Resistance of 6061 Aluminium Alloy[J]. Journal of Heilongjiang University of Technology (Comprehensive Edition), 2023, 23(8): 133-140.
[20] PRITHIVIRAJAN S, NARENDRANATH S, DESAI V.Analysing the Combined Effect of Crystallographic Orientation and Grain Refinement on Mechanical Properties and Corrosion Behaviour of Ecaped Ze41 Mg Alloy[J]. Journal of Magnesium and Alloys, 2020, 8(4): 1128-1143.
[21] GUBICZA J, RIBÁRIK G, GOREN-MUGINSTEIN G R, et al. The Density and the Character of Dislocations in Cubic and Hexagonal Polycrystals Determined by X-Ray Diffraction[J]. Materials Science and Engineering: A, 2001, 309: 60-63.
[22] RÉVÉSZ Á, UNGÁR T, BORBÉLY A, et al. Dislocations and Grain Size in Ball-Milled Iron Powder[J]. Nanostructured Materials, 1996, 7(7): 779-788.
[23] UNGÁR T, BORBÉLY A. The Effect of Dislocation Contrast on X-Ray Line Broadening: A New Approach to Line Profile Analysis[J]. Applied Physics Letters, 1996, 69(21): 3173-3175.
[24] SANDSTRÖM R, LAGNEBORG R. A Model for Hot Working Occurring by Recrystallization[J]. Acta Metallurgica, 1975, 23(3): 387-398.
[25] WILLIAMSON G K, SMALLMAN R E.Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum[J]. Philosophical Magazine, 1956, 1(1): 34-46.
[26] ROODPOSHTI P S, SARKAR A, MURTY K L, et al.Dislocation Density Evolution during Creep of AZ31 Mg Alloy: A Study by X-Ray Diffraction Line Profile Analysis[J]. Metallography, Microstructure, and Analysis, 2015, 4(5): 337-343.
[27] MIYAJIMA Y, UEDA T, ADACHI H, et al.Dislocation Density of FCC Metals Processed by ARB[J]. IOP Conference Series: Materials Science and Engineering, 2014, 63: 012138.
[28] TENG D B, ZHANG H, HAN C H, et al.Microstructure Evolution and Electrochemical Corrosion Behavior of Al-Zn-Mg Aluminum Alloy[J]. Materials Research Express, 2022, 9(4): 046519.

基金

国家自然科学基金(U1810208); 2023年度甘肃省职业教育教学改革研究项目(2023gszyjy-056)

PDF(7224 KB)

Accesses

Citation

Detail

段落导航
相关文章

/