7A52铝合金激光-MIG复合焊接数值模拟

刘庭, 赵晓鑫, 朱加雷, 张子钺, 王程远, 祁式孔, 姜成云

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 150-159.

PDF(19624 KB)
PDF(19624 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 150-159. DOI: 10.3969/j.issn.1674-6457.2025.06.016
轻合金成形

7A52铝合金激光-MIG复合焊接数值模拟

  • 刘庭, 赵晓鑫*, 朱加雷, 张子钺, 王程远, 祁式孔, 姜成云
作者信息 +

Numerical Simulation of Laser-MIG Hybrid Welding of 7A52 Aluminum Alloy

  • LIU Ting, ZHAO Xiaoxin*, ZHU Jialei, ZHANG Ziyue, WANG Chengyuan, QI Shikong, JIANG Chengyun
Author information +
文章历史 +

摘要

目的 探究7A52铝合金激光-MIG复合焊接过程中温度场变化、熔池演变行为及材料形变缺陷形成的耦合机制,为优化复合焊接工艺参数与抑制焊接缺陷提供有力依据。方法 使用Abaqus有限元分析软件,采用圆锥体热源与双椭球热源组合模型,对中厚板7A52铝合金激光-MIG复合焊接进行数值模拟,通过焊接实验验证数值模型的可靠性。结果 实际焊接过程中的最大变形量约为2 mm,模拟最大变形量为1.72 mm,模拟温度峰值达2 050 ℃、等效应力峰值达301 MPa,数值模拟的焊缝截面尺寸形貌与实际焊缝截面的基本一致。结论 所选用的组合热源模型适用于铝合金的激光-MIG复合焊接,实验优化后得到了最佳的焊接工艺参数,采用优化后的焊接工艺参数能有效抑制焊接过程中温度非均匀分布与残余应力集中引发的材料形变缺陷。

Abstract

The work aims to investigate the coupling mechanism of temperature field change, molten pool evolution and material deformation defects during laser-MIG hybrid welding of 7A52 aluminum alloy, to provide a strong basis for optimizing the hybrid welding process parameters and inhibiting welding defects. With Abaqus finite element analysis software, the numerical simulation of laser-MIG hybrid welding of medium-thick plate 7A52 aluminum alloy was carried out by the combination model of cone heat source and double ellipsoid heat source, and the reliability of the numerical model was verified through welding experiments. The maximum deformation in the actual welding process was about 2 mm, the maximum deformation in the simulation was1.72 mm, the simulated temperature peak value reached 2 050 ℃, the equivalent force peak value reached 301 MPa, and the size and shape of the numerically simulated weld section was basically the same as that of the actual weld section. The selected combined heat source model is suitable for laser-MIG hybrid welding of aluminum alloy, and the best welding process parameters are obtained after experimental optimization. The optimized welding process can effectively inhibit the material deformation defects caused by non-uniform temperature distribution and residual stress concentration during the welding process.

关键词

7A52铝合金 / 激光-MIG复合焊接 / 热源模型 / 温度场 / 应力场

Key words

7A52 aluminum alloy / laser-MIG hybrid welding / heat source model / temperature field / stress field

引用本文

导出引用
刘庭, 赵晓鑫, 朱加雷, 张子钺, 王程远, 祁式孔, 姜成云. 7A52铝合金激光-MIG复合焊接数值模拟[J]. 精密成形工程. 2025, 17(6): 150-159 https://doi.org/10.3969/j.issn.1674-6457.2025.06.016
LIU Ting, ZHAO Xiaoxin, ZHU Jialei, ZHANG Ziyue, WANG Chengyuan, QI Shikong, JIANG Chengyun. Numerical Simulation of Laser-MIG Hybrid Welding of 7A52 Aluminum Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 150-159 https://doi.org/10.3969/j.issn.1674-6457.2025.06.016
中图分类号: TG146.21   

参考文献

[1] WANG J G, WANG Z T.Advance on Wrought Aluminum Alloys Used for Aeronautic and Astronautic Industry(1)[J]. Light Alloy Fabrication Technology, 2013, 41(8): 1.
[2] DENG Y L, ZHANG X M.Development of Aluminium and Aluminium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29: 2115.
[3] NIE Z R, WEN S P, HUANG H, et al.Research Progress of Er-containing Aluminum Alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21: 2361
[4] ENZ J, RIEKEHR S, VENTZKE V, et al.Fibre Laser Welding of High-alloyed Al-Zn-M-Cu Alloys[J]. Journal of Materials Processing Technology, 2016, 237: 155-162.
[5] ZHANG L, LI X Y, NIE Z R, et al.Microstructure and Mechanical Properties of a Ne Al-Zn-Mg-Cu Alloy Joints Welded by Laser Beam[J]. Materials & Design, 2015, 83: 451-458.
[6] BRUST F W, RYBICKI E F.A Computational Model of Backlay Welding for Controlling Residual Stresses in Welded Pipes[J]. Journal of Pressure Vessel Technology, 1981, 103(3): 226-232.
[7] HOSSAIN E, HASSAN F, ARMAN G, et al.Microstructural Analyses of Aluminum-Magnesium-Silicon Alloys Welded by Pulsed Nd: YAG Laser Welding[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 660-668.
[8] 胥国祥, 郭庆虎, 胡庆贤, 等. 中厚板铝合金光纤激光+MIG复合热源焊残余应力的数值分析[J]. 机械工程学报, 2018, 54(2): 77-83.
XU G X, GUO Q H, HU Q X, et al.Numerical Analysis of Welding Residual Stress in Laser+MIG Hybrid Butt Welding of Medium-Thick Aluminum Alloy[J]. Journal of Mechanical Engineering, 2018, 54(2): 77-83.
[9] 李光祖, 王江涛, 谢利, 等. 航空铝合金激光焊接关键工艺参数与应力场关系[J]. 兵工学报, 2024, 45(5): 1692-1702.
LI G Z, WANG J T, XIE L, et al.Relationship between Key Process Parameters and Stress Field of Aviation Aluminum Alloy Welded by Laser Beam[J]. Acta Armamentarii, 2024, 45(5): 1692-1702.
[10] BAI Y, GAO H M, QIU L.Droplet Transition for Plasma-MIG Welding on Aluminium Alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2234-2239.
[11] WANG W, WANG K S, GUO Q, et al.Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Cast AZ31 Magnesium Alloy[J]. Rare Metal Materials and Engineering, 2012, 41(9): 1522-1526.
[12] ZHAN X H, ZHAO Y Q, LIU Z M, et al.Microstructure and Porosity Characteristics of 5A06 Aluminum Alloy Joints Using Laser-MIG Hybrid Welding[J]. Journal of Manufacturing Processes, 2018, 35: 437-445.
[13] MA Y L, ZHU J, ZHANG L M, et al.Numerical Simulation and Experimental Study of Hybrid Laser-Electric Arc Welding between Dissimilar Mg Alloys[J]. Journal of Central South University, 2022, 29(10): 3476-3488.
[14] 杨志斌, 谢延祺, 盛立康. 20 mm厚铝合金激光-MIG复合打底焊工艺及组织性能[J]. 中国激光, 2024, 51(20): 2002101.
YANG Z B, XIE Y Q, SHENG L K.Laser-MIG Hybrid Backing Welding Process of 20 mm Thick Aluminum Alloy and Structure Properties[J]. Chinese Journal of Lasers, 2024, 51(20): 2002101.
[15] LU Y, WANG D F, CAO L J, et al.Comparative Analysis of Mechanical Properties and Microstructure of 7B52 Aluminum Alloy Laser-MIG Hybrid Welding and MIG Welding Joints[J]. Metals, 2024, 14(10): 1110.
[16] 赵婷, 张新戈. 铝合金激光-电弧复合焊接研究现状与进展[J]. 焊接, 2012(11): 22-26.
ZHAO T, ZHANG X G.Research Status and Development on Laser-Arc Hybrid Welding of Aluminum Alloy[J]. Welding & Joining, 2012(11): 22-26.
[17] RODGE E D, FLETCHER R P.The Determination of Internal Stresses from the Temperature History of a Butt Welded Pipe[J]. Welding Journal Research Supplement, 1938, 17: 4-7.
[18] 张景泉, 黄婷, 王栋, 等. 铝合金光纤激光高速压力焊接[J]. 焊接学报, 2021, 42(4): 20-27.
ZHANG J Q, HUANG T, WANG D, et al.Fiber Laser Pressure Welding of Aluminum Alloy at High Welding Speed[J]. Transactions of the China Welding Institution, 2021, 42(4): 20-27.
[19] 李兴霞, 王红玉, 张建勋. TC4钛合金激光焊缝形貌与残余应力数值研究[J]. 稀有金属材料与工程, 2014, 43(4): 911-915.
LI X X, WANG H Y, ZHANG J X.Numerical Research on the Weld Bead Geometry and Residual Stresses with Different Heat Source Models in Laser Welding of TC4 Titanium Alloy[J]. Rare Metal Materials and Engineering, 2014, 43(4): 911-915.
[20] 张拓, 张宏, 刘佳. 激光-电弧复合焊接数值模拟的热源模型[J]. 应用激光, 2016, 36(1): 58-62.
ZHANG T, ZHANG H, LIU J.Laser-Arc Hybrid Welding Heat Source Model for Numerical Simulation[J]. Applied Laser, 2016, 36(1): 58-62.
[21] 鲍亮亮. EQ70钢激光电弧复合焊热影响区脆化机理研究[D]. 东营: 中国石油大学(华东), 2021.
BAO L L.Study on Embrittlement Mechanism of Heat Affected Zone of EQ70 Steel by Laser Arc Hybrid Welding[D]. Dongying: China University of Petroleum (Huadong), 2021.
[22] 王良, 陈香锦, 晏文涛, 等. 中厚板铝合金激光-MIG复合焊过程应力与变形研究[J]. 应用激光, 2023, 43(2): 70-79.
WANG L, CHEN X J, YAN W T, et al.The Study of Stress and Deformation during Laser-MIG Hybrid Welding of Medium and Heavy Plate Aluminum Alloy[J]. Applied Laser, 2023, 43(2): 70-79.
[23] HE E G, GONG S L, WU B, et al.Distribution Features of the Residual Stress for T-joints by Laser Welding[J]. Rare Metal Materials and Engineering, 2011, 40(S4): 130-133.
[24] 甘世明, 韩永全, 陈芙蓉, 等. 基于弹性模量变化的7A52铝合金VPPA-MIG复合焊接残余应力测试[J]. 焊接学报, 2019, 40(5): 13-17.
GAN S M, HAN Y Q, CHEN F R, et al.7A52 Aluminum Alloy VPPA-MIG Hybrid Welding Residual Stress Testing Based on Elastic Modulus Variation[J]. Transactions of the China Welding Institution, 2019, 40(5): 13-17.
[25] 朱征宇, 刘辉, 王加友, 等. 铝合金T型接头激光+ GMAW复合焊残余应力数值分析[J]. 精密成形工程, 2024, 16(4): 101-110.
ZHU Z Y, LIU H, WANG J Y, et al.Numerical Analysis of Residual Stress in Laser+GMAW Hybrid Welding of Aluminum Alloy for T-Joint[J]. Journal of Netshape Forming Engineering, 2024, 16(4): 101-110.
[26] WAN Z D, ZHAO Y, WANG Q, et al.Microstructure-Based Modeling of the PMZ Mechanical Properties in 2219-T8 Aluminum Alloy TIG Welding Joint[J]. Materials & Design, 2022, 223: 111133.

基金

国家自然科学基金(52205331); 北京市科技计划重点项目(KZ202210017023); 国家自然科学基金联合基金重点支持项目(U22B20127)

PDF(19624 KB)

Accesses

Citation

Detail

段落导航
相关文章

/