超声振动辅助对6061铝合金拉伸性能及微观组织的影响

吕源, 潘熙祥, 易聪, 杨坪川, 林芯仪, 李鑫, 王岩, 王一凡

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 143-149.

PDF(4156 KB)
PDF(4156 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 143-149. DOI: 10.3969/j.issn.1674-6457.2025.06.015
轻合金成形

超声振动辅助对6061铝合金拉伸性能及微观组织的影响

  • 吕源1, 潘熙祥1, 易聪1, 杨坪川2, 林芯仪2, 李鑫2, 王岩1, 王一凡1
作者信息 +

Effect of Ultrasonic Vibration Assistance on the Tensile Properties and Microstructure of 6061 Aluminium Alloy

  • LYU Yuan1, PAN Xixiang1, YI Cong1, YANG Pingchuan2, LIN Xinyi2, LI Xin2, WANG Yan1, WANG Yifan1
Author information +
文章历史 +

摘要

目的 在不同振幅的超声振动辅助情况下,研究6061铝合金材料拉伸性能和微观组织的变化。方法 在不同超声振幅条件下进行了不同拉伸速率的超声辅助拉伸试验。通过显微硬度计对拉伸试件的硬度进行测量。采用扫描电子显微镜观察分析断口形貌。采用金相显微镜观察超声振动作用下材料微观组织的变化。结果 随着超声振动的施加,拉伸试件的显微硬度显著提升,显微硬度的增幅与超声振幅和振动施加时长成正比,试件断口中的韧窝尺寸和韧窝数量显著提高,大尺寸晶粒数量显著下降,细小晶粒持续增加。拉伸过程中的流动应力显著下降,屈服强度从285.01 MPa下降至264.51 MPa,抗拉强度由355.71 MPa下降至336.09 MPa,伸长率变化较小。结论 在拉伸过程中超声振动起到硬化作用,硬化作用效果的主要影响因素是超声振动的振幅大小和超声作用时长。产生超声硬化效果是因为在超声的作用下,材料的小尺寸晶粒数量显著提升,从而产生的细晶强化效应导致力学性能增强。

Abstract

The work aims to study the changes in tensile properties and microstructure of 6061 aluminium alloy materials under ultrasonic vibration assisted conditions with different amplitudes. Ultrasonic-assisted tensile tests were carried out under different ultrasonic amplitude conditions and different tensile rates respectively. The hardness of the tensile specimens was measured by the microhardness tester. The scanning electron microscope was used to observe and analyze the fracture morphology. The metallographic microscope was used to observe the changes in the microstructure of the material under the effect of ultrasonic vibration. The microhardness of the tensile specimens increased significantly with the application of ultrasonic vibration, and the increase in the microhardness was proportional to the ultrasonic amplitude and the duration of vibration application. The size of the ligamentous nests and the number of ligamentous nests in the fracture of the specimens increased significantly. The number of large-sized grains decreased significantly and the number of fine grains increased continuously. There was a significant decrease in the flow stress during stretching, with the yield strength decreasing from 285.01 MPa to 264.51 MPa, the tensile strength decreasing from 355.71 MPa to 336.09 MPa, and the change in elongation being small. The ultrasonic vibration has a hardening effect in the auxiliary tensile process, and the main factors affecting the hardening effect are the amplitude size of ultrasonic vibration and the duration ultrasonic action. The reason for the ultrasonic hardening effect is that the number of small-sized grains of the material is significantly increased by ultrasound, which results in the strengthening effect of fine grains leading to the enhancement of the mechanical properties.

关键词

6061铝合金 / 拉伸性能 / 超声振动 / 显微组织 / 声软化效应

Key words

6061 aluminum alloy / tensile properties / ultrasonic vibration / microstructure / acoustic softening effect

引用本文

导出引用
吕源, 潘熙祥, 易聪, 杨坪川, 林芯仪, 李鑫, 王岩, 王一凡. 超声振动辅助对6061铝合金拉伸性能及微观组织的影响[J]. 精密成形工程. 2025, 17(6): 143-149 https://doi.org/10.3969/j.issn.1674-6457.2025.06.015
LYU Yuan, PAN Xixiang, YI Cong, YANG Pingchuan, LIN Xinyi, LI Xin, WANG Yan, WANG Yifan. Effect of Ultrasonic Vibration Assistance on the Tensile Properties and Microstructure of 6061 Aluminium Alloy[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 143-149 https://doi.org/10.3969/j.issn.1674-6457.2025.06.015
中图分类号: TG113   

参考文献

[1] DIXIT U S, PULAK M P, GIRISH C V.Ultrasonic-assisted Machining Processes: a Review[J]. International Journal of Mechatronics and Manufacturing Systems, 2019, 12: 227-254.
[2] 李双利, 赵亦希, 于忠奇. 声塑性机制及其在塑性加工中的应用[J]. 塑性工程学报, 2023, 30(8): 8-34.
LI S L, ZHAO Y X, YU Z Q.Acoustoplastic Mechanism and Its Application in Plastic Processing[J]. Journal of Plasticity Engineering, 2023, 30(8): 8-34.
[3] LYU Y, DONG M G, PAN X X, et al.Surface Mechanical Properties and Micro-Structure Evolution of 7075 Aluminum Alloy Sheet for 2-Dimension Ellipse Ultrasonic Vibration Incremental Forming: A Pretreatment for Laser Shock Peening[J]. Coatings, 2022, 12(12): 1914.
[4] LOTFI M, JAVAD A.Finite Element Simulation of Ultrasonic-assisted Machining: a Review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116: 2777-2796.
[5] 杨明顺, 肖旭东, 姚志远, 等. 1060铝板超声振动单点增量成形极限研究[J]. 兵工学报, 2019, 40(3): 601-611.
YANG M S, XIAO X D, YAO Z Y, et al.Research on Forming Limit of 1060 Aluminum Sheet in Ultrasonic Vibration-Assisted Single Point Incremental Forming[J]. Acta Armamentarii, 2019, 40(3): 601-611.
[6] 柏朗, 李言, 杨明顺, 等. 超声振动-单点增量复合成形过程中成形力的分析与建模[J]. 机械工程学报, 2019, 55(2): 42-50.
BAI L, LI Y, YANG M S, et al.Analytical Model of Ultrasonic Vibration Single PointIncremental Forming Force[J]. Journal of Mechanical Engineering, 2019, 55(2): 42-50.
[7] 吕源, 董蒙恩, 潘熙祥, 等. 椭圆双向超声振动渐进成形对6061铝合金薄壁件力学性能和微观结构的影响(英文)[J]. 稀有金属材料与工程, 2023, 52(5): 1633-1642.
LYU Y, DONG M E, PAN X X, et al.Effect of Elliptical Bidirectional Ultrasonic Vibration Incremental Forming on Mechanical Properties and Microstructure of 6061 Aluminum Alloy Thin-Walled Parts[J]. Rare Metal Materials and Engineering, 2023, 52(5): 1633-1642.
[8] ZHANG Y N, QIAO H C, ZHAO J B, et al.Research on Water Jet-Guided Laser Micro-Hole Machining of 6061 Aluminum Alloy[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(1): 1-13.
[9] YANG J J, CHEN L W, FAN C H, et al.Preparation and Properties of Ag-Containing Porous Layer on 6061 Aluminum Alloy Surfaces[J]. Surface and Coatings Technology, 2024, 484: 130833.
[10] LUO D M, LI F, XING G H.Corrosion Resistance of 6061-T6 Aluminium Alloy and Its Feasibility of Near-Surface Reinforcements in Concrete Structure[J]. Reviews on Advanced Materials Science, 2022, 61(1): 638-653.
[11] NOURIAN A, SCHWARTZ T, BOESE S, et al.Effects of Process Parameters on Cold Spray Deposition of Al-6061 Alloy[J]. Journal of Thermal Spray Technology, 2022, 31(8): 2517-2536.
[12] 马付建, 李锡伟, 陈绍, 等. 6061铝合金超声辅助搅拌摩擦焊温度场分析[J]. 焊接学报, 2024, 45(8): 41-51.
MA F J, LI X W, CHEN S, et al.Analysis of Temperature Field of Ultrasonic Assisted Friction Stir Welding of 6061 Aluminum Alloy[J]. Transactions of the China Welding Institution, 2024, 45(8): 41-51.
[13] 李春, 杜欣蔚, 杜宝宪, 等. 6061铝合金表面激光粗化技术研究[J]. 中国激光, 2024, 51(16): 108-117.
LI C, DU X W, DU B X, et al.Surface Roughening Technology by Laser Beam for 6061 Aluminum Alloy[J]. Chinese Journal of Lasers, 2024, 51(16): 108-117.
[14] 张艳苓, 杨毅, 韩玉杰, 等. 脉冲电流对6061T6铝合金流动摩擦挤压成形微观组织的影响[J]. 塑性工程学报, 2024, 31(2): 36-42.
ZHANG Y L, YANG Y, HAN Y J, et al.Effect of Pulse Current on Microstructure of 6061T6 Aluminum Alloy in Flow Friction Extrusion Forming[J]. Journal of Plasticity Engineering, 2024, 31(2): 36-42.
[15] BLAHA F, LANGENECKER B.Dehnung von Zink-Kristallen Unter Ultraschalleinwirkung[J]. Naturwissenschaften, 1955, 42(20): 556.
[16] 李双利, 赵亦希, 于忠奇, 等. 2219-O铝合金声软化效应建模与预测[J]. 航空学报, 2023, 44(9): 626884.
LI S L, ZHAO Y X, YU Z Q, et al.Modeling and Prediction of Acoustic Softening Effect of 2219-O Aluminum Alloy[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 626884.
[17] 胡一杰, 孙有平, 周思鹏, 等. 超声辅助对2524铝合金搅拌摩擦点焊组织与性能影响研究[J]. 矿冶工程, 2021, 41(3): 129-133.
HU Y J, SUN Y P, ZHOU S P, et al.Effect of Ultrasonic Assistance on Microstructure and Properties of 2524 Aluminum Alloy by Friction Stir Spot Welding[J]. Mining and Metallurgical Engineering, 2021, 41(3): 129-133.
[18] 单德彬, 李虎山, 陈俞希, 等. 复杂微型构件特种能场辅助微成形研究进展[J]. 精密成形工程, 2024, 16(7): 23-47.
SHAN D B, LI H S, CHEN Y X, et al.Research Progress on Energy Field Assisted Micro-Forming of Complex Micro Parts[J]. Journal of Netshape Forming Engineering, 2024, 16(7): 23-47.
[19] 高铁军, 刘小军, 于鲲, 等. 超声振动对TC1钛合金板材拉伸性能的影响[J]. 稀有金属材料与工程, 2019, 48(1): 286-292.
GAO T J, LIU X J, YU K, et al.Effects of Ultrasonic Vibration on Tensile Properties of TC1 Titanium Alloy Sheet[J]. Rare Metal Materials and Engineering, 2019, 48(1): 286-292.
[20] CAO M Y, LI J C, YUAN Y N, et al.Flexible Die Drawing of Magnesium Alloy Sheet by Superimposing Ultrasonic Vibration[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 163-171.
[21] DUTTA R K, PETROV R H, DELHEZ R, et al.The Effect of Tensile Deformation by in Situ Ultrasonic Treatment on the Microstructure of Low-Carbon Steel[J]. Acta Materialia, 2013, 61(5): 1592-1602.
[22] SIU K W, NGAN A H W, JONES I P. New Insight on Acoustoplasticity-Ultrasonic Irradiation Enhances Subgrain Formation during Deformation[J]. International Journal of Plasticity, 2011, 27(5): 788-800.
[23] XIANG D H, ZHANG Z M, WU B F, et al.Effect of Ultrasonic Vibration Tensile on the Mechanical Properties of High-Volume Fraction SiCp/Al Composite[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(11): 2051-2066.
[24] MAO Q, COUTRIS N, RACK H, et al.Investigating Ultrasound-Induced Acoustic Softening in Aluminum and Its Alloys[J]. Ultrasonics, 2020, 102: 106005.
[25] CHENG R, ROSE S, TAUB A.Acoustic Softening-Investigation of the Volume Effect and Introduction of Amplitude Strain Parameter[J]. Materials Science and Engineering: A, 2023, 881: 145437.
[26] YAO Z H, KIM G Y, WANG Z H, et al.Acoustic Softening and Residual Hardening in Aluminum: Modeling and Experiments[J]. International Journal of Plasticity, 2012, 39: 75-87.

基金

国家自然科学基金(52005399)

PDF(4156 KB)

Accesses

Citation

Detail

段落导航
相关文章

/