航天用铝合金渐进成形韧性断裂数值预测的研究进展

高正源, 李沛豪, 李正芳, 安治国, 李治兵, 孙鹏飞, 任重, 李江, 张义, 乔正阳

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 129-142.

PDF(17712 KB)
PDF(17712 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 129-142. DOI: 10.3969/j.issn.1674-6457.2025.06.014
轻合金成形

航天用铝合金渐进成形韧性断裂数值预测的研究进展

  • 高正源1, 李沛豪1, 李正芳2*, 安治国1, 李治兵1, 孙鹏飞1, 任重3, 李江4, 张义4, 乔正阳5
作者信息 +

Investigation Progress on Numerical Prediction of Toughness Fracture in Incremental Forming of Aluminum Alloys for Aerospace Applications

  • GAO Zhengyuan1, LI Peihao1, LI Zhengfang2*, AN Zhiguo1, LI Zhibing1, SUN Pengfei1, REN Zhong3, LI Jiang4, ZHANG Yi4, QIAO Zhengyang5
Author information +
文章历史 +

摘要

随着现代工业的进步,为了满足航天制造和汽车工业领域日益增长的高精度定制零件需求,轻量化制造已成为航天和汽车工业的重要发展方向,其中渐进成形技术以其柔性无模的特性满足了高精度、低成本、个性化生产的需求。铝合金因其优异的比强度和成形性,成为渐进成形的首选材料,但其在复杂应力条件下易发生韧性断裂,这对零件的质量和性能提出了挑战。近年来,随着计算机等相关学科的进步,有限元仿真技术与相关韧性断裂准则已成为预测铝合金成形断裂缺陷的重要手段。本文总结了材料发生塑性变形时的本构模型,并对宏观场景下快速预测的耦合韧性断裂准则与微观分析和高精度模拟的非耦合韧性断裂准则的研究现状进行了详尽综述,探讨了各类本构模型和断裂准则在渐进成形中的适用性和精度,同时分析了通过优化网格尺寸、温度和刀具路径等工艺参数来提高成形性能并提升断裂预测精度的方法。最后,结合实验与数值仿真结果,验证了数值仿真在预测韧性断裂缺陷方面的准确性,并综述了工艺参数对材料韧性断裂预测精度的影响。在此基础上,未来应聚焦于提升铝合金渐进成形性能和断裂预测精度,发展更精确的本构模型与韧性断裂准则,优化温度、网格尺寸和刀具路径等工艺参数。同时,探索新型铝合金及复合材料的断裂预测方法,结合多场耦合仿真技术,为高端制造中的应用提供支持。

Abstract

With the advancement of the modern industry, lightweight manufacturing has become a critical development direction in the aerospace and automotive industries to meet the growing demand for high-precision customized components. Incremental forming technology, characterized by its flexible, die-less process, addresses the demands of high precision, low cost, and personalized production. Aluminum alloys, due to their excellent specific strength and formability, have become the preferred materials for incremental forming. However, their susceptibility to ductile fracture under complex stress conditions poses challenges to the quality and performance of formed components. In recent years, advancements in computational technologies have made finite element simulation, combined with ductile fracture criteria, a key tool for predicting aluminum alloy fracture during forming. This paper reviews constitutive models for plastic deformation and provides a detailed summary of the research progress on coupled ductile fracture criteria for macroscopic fast predictions and uncoupled criteria for microscopic high-precision simulations. The applicability and accuracy of various constitutive models and fracture criteria in incremental forming are explored, along with methods to improve forming performance and fracture prediction accuracy by optimizing process parameters such as mesh size, temperature, and toolpath. Additionally, experimental and numerical results validate the accuracy of simulations in predicting ductile fracture, and the influence of process parameters on the accuracy of material toughness fracture prediction is summarized. Therefore, future research should focus on enhancing forming performance and fracture prediction accuracy, developing more precise constitutive models and fracture criteria, optimizing process parameters such as mesh size, temperature, and toolpath, exploring fracture prediction methods of novel aluminum alloys and composites, and coupling these efforts with multi-field simulation techniques to support high-end manufacturing applications.

关键词

渐进成形 / 韧性断裂 / 铝合金 / 有限元分析 / 数值预测 / 断裂模型

Key words

incremental forming / ductile fracture / aluminum alloy / finite element analysis / numerical prediction / fracture model

引用本文

导出引用
高正源, 李沛豪, 李正芳, 安治国, 李治兵, 孙鹏飞, 任重, 李江, 张义, 乔正阳. 航天用铝合金渐进成形韧性断裂数值预测的研究进展[J]. 精密成形工程. 2025, 17(6): 129-142 https://doi.org/10.3969/j.issn.1674-6457.2025.06.014
GAO Zhengyuan, LI Peihao, LI Zhengfang, AN Zhiguo, LI Zhibing, SUN Pengfei, REN Zhong, LI Jiang, ZHANG Yi, QIAO Zhengyang. Investigation Progress on Numerical Prediction of Toughness Fracture in Incremental Forming of Aluminum Alloys for Aerospace Applications[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 129-142 https://doi.org/10.3969/j.issn.1674-6457.2025.06.014
中图分类号: TG335   

参考文献

[1] EDWARD L. Apparatus and Process for Incremental Dieless Forming: US3342051[P].1967-09-19.
[2] 松原茂夫. タイレスフ才一ミングとしての数值制御逐次成形法[J]. プレス技术, 1998, 36(10): 109-115.
[3] GANDLA P K, PANDRE S, SURESH K, et al.A Critical Analysis of Formability and Quality Parameters for Forming a Dome Shape Using Multi-Stage Strategies in Incremental Forming Process[J]. Journal of Materials Research and Technology, 2022, 19: 1037-1048.
[4] 高正源, 张更, 李正芳, 等. 渐进成形不同热辅助工艺对制件微观结构影响的研究进展[J]. 精密成形工程, 2023, 15(7): 200-209.
GAO Z Y, ZHANG G, LI Z F, et al.Current Situation and Microscopic Analysis of Sheet Metal Heat-Assisted Incremental Forming Process[J]. Journal of Netshape Forming Engineering, 2023, 15(7): 200-209.
[5] 赵超越, 朱虎. 基于多道次数控渐进成形策略优化的有限元分析[J]. 机械工程与自动化, 2022(6): 95-97.
ZHAO C Y, ZHU H.Finite Element Analysis Based on Multi-Pass Controlled Incremental Forming Strategy Optimization[J]. Mechanical Engineering & Automation, 2022(6): 95-97.
[6] KEELER S P.Plastic Instability and Fracture in Sheets Stretched over Rigid Punches[J]. Massachusetts Institute of Technology, Massachusetts Institute of Technology, 1963, 56(1): 25-48.
[7] BABOUT L, BRECHET Y, MAIRE E, et al.On the Competition between Particle Fracture and Particle Decohesion in Metal Matrix Composites[J]. Acta Materialia, 2004, 52(15): 4517-4525.
[8] WECK A, WILKINSON D S, MAIRE E, et al.Visualization by X-Ray Tomography of Void Growth and Coalescence Leading to Fracture in Model Materials[J]. Acta Materialia, 2008, 56(12): 2919-2928.
[9] WECK A, WILKINSON D S.Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes[J]. Acta Materialia, 2008, 56(8): 1774-1784.
[10] ACHOURI M, GERMAIN G, DAL SANTO P, et al.Experimental Characterization and Numerical Modeling of Micromechanical Damage under Different Stress States[J]. Materials & Design, 2013, 50: 207-222.
[11] ZHANG L, YUAN Q, TAN J, et al.Enhancing the Room-Temperature Plasticity of Magnesium Alloys: Mechanisms and Strategies[J]. Journal of Magnesium and Alloys, 2024, 12(12): 4741-4767.
[12] LI Z F, LU S H, CHEN P.Improvement of Dimensional Accuracy Based on Multistage Single Point Incremental Forming of a Straight Wall Cylinder Part[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(9): 1281-1286.
[13] BEN SAID L, MARS J, WALI M, et al.Numerical Prediction of the Ductile Damage in Single Point Incremental Forming Process[J]. International Journal of Mechanical Sciences, 2017, 131: 546-558.
[14] KUMAR A, SINGH A K, SHRIVASTAVA A, et al.Shear Modified Lemaitre Damage Model for Fracture Prediction during Incremental Sheet Forming[J]. International Journal of Solids and Structures, 2022, 252: 111822.
[15] 刘立熙, 朱健, 李志强. 基于应力三轴度和罗德参数的6061和7075铝合金材料断裂失效分析[J]. 实验力学, 2017, 32(3): 342-350.
LIU L X, ZHU J, LI Z Q.Fracture Failure Analysis of 6061 and 7075 Aluminum Alloy Based on Stress Triaxiality and Lode Parameter[J]. Journal of Experimental Mechanics, 2017, 32(3): 342-350.
[16] 刘超, 孙秦, 刘彦杰. 三维应力状态下2A12试件有限变形和断裂的数值模拟[J]. 中国有色金属学报, 2014, 24(5): 1157-1166.
LIU C, SUN Q, LIU Y J.Numerical Simulation of Finite Deformation and Failure of 2A12 Specimens under Three-Dimensional Stress State[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1157-1166.
[17] 赵辉, 彭艳, 石宝东. 金属材料各向异性本构模型研究进展[J]. 塑性工程学报, 2022, 29(10): 32-42.
ZHAO H, PENG Y, SHI B D.Research Progress on Anisotropic Constitutive Model of Metal Materials[J]. Journal of Plasticity Engineering, 2022, 29(10): 32-42.
[18] 马宏越, 肖纳敏, 钱鹏, 等. 非耦合韧性断裂准则及其在航空金属材料中的应用[J]. 航空材料学报, 2021, 41(2): 16-31.
MA H Y, XIAO N M, QIAN P, et al.Uncoupled Ductile Fracture Criterion and Its Application in Aeronautical Metallic Materials[J]. Journal of Aeronautical Materials, 2021, 41(2): 16-31.
[19] GENG H C, WANG Y L, ZHU B, et al.Effect of Solution Treatment Time on Plasticity and Ductile Fracture of 7075 Aluminum Alloy Sheet in Hot Stamping Process[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(11): 3516-3533.
[20] HILL R.A Theory of the Yielding and Plastic Flow of Anisotropic Metals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297.
[21] BARLAT F, LIAN K.Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets under Plane Stress Conditions[J]. International Journal of Plasticity, 1989, 5(1): 51-66.
[22] ARETZ H, BARLAT F.New Convex Yield Functions for Orthotropic Metal Plasticity[J]. International Journal of Non-Linear Mechanics, 2013, 51: 97-111.
[23] LOU Y S, ZHANG S J, YOON J W.A Reduced Yld2004 Function for Modeling of Anisotropic Plastic Deformation of Metals under Triaxial Loading[J]. International Journal of Mechanical Sciences, 2019, 161: 105027.
[24] ROY B K, KORKOLIS Y P, ARAI Y, et al.Plastic Deformation of AA6061-T6 at Elevated Temperatures: Experiments and Modeling[J]. International Journal of Mechanical Sciences, 2022, 216: 106943.
[25] FREUDENTHAL A.M. The Inelastic Behavior of Engineering Materials and Structures[J]. John Wiley & Sons, 1950, 250(6): 584-585.
[26] OYANE M, SATO T, OKIMOTO K, et al.Criteria for Ductile Fracture and Their Applications[J]. Journal of Mechanical Working Technology, 1980, 4(1): 65-81.
[27] RICE J R, TRACEY D M.On the Ductile Enlargement of Voids in Triaxial Stress Fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217.
[28] COCKCROFT M G.Ductility and Workability of Metals[J]. Journal of Metals, 1968, 96: 2444.
[29] CHEN D C, CHANG D Y, CHEN F H, et al.Application of Ductile Fracture Criterion for Tensile Test of Zirconium Alloy 702[J]. Scientia Iranica, 2018, 25(2): 824-829.
[30] OH S I, CHEN C C, KOBAYASHI S.Ductile Fracture in Axisymmetric Extrusion and Drawing: Part 2: Workability in Extrusion and Drawing[J]. Journal of Engineering for Industry, 1979, 101(1): 36-44.
[31] BROZZO P, DELUCA B, RENDINA R.A New Method for the Predication of Formability Limits in Metal Sheets[J]. Journal of Engineering for Industry, 1979, 101(1): 36-44.
[32] YANG Z Y, ZHAO C C, DONG G J, et al.Experimental Calibration of Ductile Fracture Parameters and Forming Limit of AA7075-T6 Sheet[J]. Journal of Materials Processing Technology, 2021, 291: 117044.
[33] AZODI H D, SAFARI M, DARABI R.Formability Prediction of Two-Layer Sheets Based on Ductile Fracture Criteria[J]. Transactions of the Indian Institute of Metals, 2017, 70(7): 1841-1847.
[34] BAI Y L, WIERZBICKI T.Application of Extended Mohr-Coulomb Criterion to Ductile Fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20.
[35] TALEBI-GHADIKOLAEE H, MOSLEMI NAEINI H, MIRNIA M J, et al.Experimental and Numerical Investigation of Failure during Bending of AA6061 Aluminum Alloy Sheet Using the Modified Mohr-Coulomb Fracture Criterion[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(12): 5217-5237.
[36] QIAO Y Y, LIU J L, JIA Y Q.Experimental and Numerical Investigation of Failure during Bending of AA6061 Aluminum Alloy Sheet Using the Modified Mohr-Coulomb Fracture Criterion[J]. The International Journal of Advanced Manufacturing Technology, 2019, 204(2): 205-224
[37] CHAOUADI R, DE MEESTER P, VANDERMEULEN W.Damage Work as Ductile Fracture Criterion[J]. International Journal of Fracture, 1994, 66(2): 155-164.
[38] LOU Y S, YOON J W, HUH H.Modeling of Shear Ductile Fracture Considering a Changeable Cut-off Value for Stress Triaxiality[J]. International Journal of Plasticity, 2014, 54: 56-80.
[39] LOU Y S, HUH H, LIM S, et al.New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals[J]. International Journal of Solids and Structures, 2012, 49(25): 3605-3615.
[40] LOU Y S, CHEN L, CLAUSMEYER T, et al.Modeling of Ductile Fracture from Shear to Balanced Biaxial Tension for Sheet Metals[J]. International Journal of Solids and Structures, 2017, 112: 169-184.
[41] BAI Y L, WIERZBICKI T.A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096.
[42] CHO D, JANG Y C, LEE Y.Evaluation of the Prediction Ability of Ductile Fracture Criteria over a Wide Range of Drawing Conditions[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4245-4254.
[43] KO Y K, LEE J S, HUH H, et al.Prediction of Fracture in Hub-Hole Expanding Process Using a New Ductile Fracture Criterion[J]. Journal of Materials Processing Technology, 2007, 187: 358-362.
[44] MCALLEN P, PHELAN P.Ductile Fracture by Central Bursts in Drawn 2011 Aluminium Wire[J]. International Journal of Fracture, 2005, 135(1): 19-33.
[45] ZHAN X P, WANG Z H, LI M, et al.Investigations on Failure-to-Fracture Mechanism and Prediction of Forming Limit for Aluminum Alloy Incremental Forming Process[J]. Journal of Materials Processing Technology, 2020, 282: 116687.
[46] JEAN L.A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89.
[47] GURSON A L.Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.
[48] TVERGAARD V, NEEDLEMAN A.Analysis of the Cup-Cone Fracture in a Round Tensile Bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.
[49] CHU C C, NEEDLEMAN A.Void Nucleation Effects in Biaxially Stretched Sheets[J]. Journal of Engineering Materials and Technology, 1980, 102(3): 249-256.
[50] CHANG Z D, CHEN J.A New Void Coalescence Mechanism during Incremental Sheet Forming: Ductile Fracture Modeling and Experimental Validation[J]. Journal of Materials Processing Technology, 2021, 298: 117319.
[51] LI H, FU M W, LU J, et al.Ductile Fracture: Experiments and Computations[J]. International Journal of Plasticity, 2011, 27(2): 147-180.
[52] ZHANG K, BADREDDINE H, HFAIEDH N, et al.Enhanced CDM Model Accounting of Stress Triaxiality and Lode Angle for Ductile Damage Prediction in Metal Forming[J]. International Journal of Damage Mechanics, 2021, 30(2): 260-282.
[53] MOSER N, PRITCHET D, REN H Q, et al.An Efficient and General Finite Element Model for Double-Sided Incremental Forming[J]. Journal of Manufacturing Science and Engineering, 2016, 138(9): 091007.
[54] TAN C J.Effect of Meshing Technique and Time Discretization Size on Thickness Strain Localization during Hole-Flanging Simulation of DP980 Sheet at High Strain Level[J]. Alexandria Engineering Journal, 2024, 86: 360-372.
[55] SURESH K, REGALLA S P.Effect of Mesh Parameters in Finite Element Simulation of Single Point Incremental Sheet Forming Process[J]. Procedia Materials Science, 2014, 6: 376-382.
[56] HE S, VAN BAEL A, VAN HOUTTE P, et al. Finite Element Modeling of Incremental Forming of Aluminum Sheets[J]. Advanced Materials Research, 2005, 6/7/8: 525-532.
[57] 刘赫崴, 刘昆, 王秀飞, 等. 考虑单元网格尺寸影响的RTCL准则修正及应用研究[J]. 振动与冲击, 2023, 42(4): 65-70.
LIU H W, LIU K, WANG X F, et al.Modification and Application of RTCL Criterion Considering Mesh Size Effect[J]. Journal of Vibration and Shock, 2023, 42(4): 65-70.
[58] VAHDANI M, MIRNIA M J, BAKHSHI-JOOYBARI M, et al.Electric Hot Incremental Sheet Forming of Ti-6Al-4V Titanium, AA6061 Aluminum, and DC01 Steel Sheets[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 1199-1209.
[59] KUMAR G, MAJI K.Investigations into Enhanced Formability of AA5083 Aluminum Alloy Sheet in Single-Point Incremental Forming[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 1289-1305.
[60] SINGH S A, PRIYADARSHI S, TANDON P.Comparative Study of Incremental Forming and Elevated Temperature Incremental Forming through Experimental Investigations on AA1050 Sheet[J]. Journal of Manufacturing Science and Engineering, 2021, 143(6): 064501.
[61] XIAO X, KIM C I, LYU X D, et al.Formability and Forming Force in Incremental Sheet Forming of AA7075-T6 at Different Temperatures[J]. Journal of Mechanical Science and Technology, 2019, 33(8): 3795-3802.
[62] DARZI S, MIRNIA M J, ELYASI M.Single-Point Incremental Forming of AA6061 Aluminum Alloy at Elevated Temperatures[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(3): 1023-1039.
[63] WANG H, WU T L, WANG J H, et al.Experimental Study on the Incremental Forming Limit of the Aluminum Alloy AA2024 Sheet[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(11): 3507-3515.
[64] LIU Z B, LI Y L, MEEHAN P A.Tool Path Strategies and Deformation Analysis in Multi-Pass Incremental Sheet Forming Process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1): 395-409.
[65] JIANG W, MIURA T, OKADA M, et al.Improvement of Forming Limit in Height with Alternating Tool Path in Penetrating Tool Friction Stir Incremental Forming[J]. Materials Transactions, 2020, 61(5): 1000-1007.
[66] BHARTI S, KARVAJE K S, KRISHNASWAMY H, et al.Investigation of Feature-Based and Space-Filling Tool Path Strategies for Formability in Incremental Sheet Metal Forming[J]. International Journal of Material Forming, 2023, 16(6): 60.
[67] SU C J, DING T Y, LI X X, et al.Research on the Effects of Machining Paths and Variable Parameters of Different Passes on Defects in Multi-Pass Single-Point Incremental Forming[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131(9): 4663-4682.
[68] ULLAH S, LI X Q, XU P, et al.Experimental and Numerical Investigation of Novel Toolpaths on Forming Quality in DSIF[J]. The International Journal of Advanced Manufacturing Technology, 2024, 133(5): 2921-2936.
[69] BASAK S, PRASAD K S, SIDPARA A M, et al.Single Point Incremental Forming of AA6061 Thin Sheet: Calibration of Ductile Fracture Models Incorporating Anisotropy and Post Forming Analyses[J]. International Journal of Material Forming, 2019, 12(4): 623-642.
[70] NGUYEN D T, PARK J G, KIM Y S.Ductile Fracture Prediction in Rotational Incremental Forming for Magnesium Alloy Sheets Using Combined Kinematic/Isotropic Hardening Model[J]. Metallurgical and Materials Transactions A, 2010, 41(8): 1983-1994.
[71] DEWANGAN Y K, BANJARE R, FAYE A, et al.Experimentation and FE Analysis of Low Carbon Steel-Based Laser Welded Tailored Blanks in Case of Single Point Incremental Forming[J]. Mechanics of Advanced Materials and Structures, 2024, 11: 1-16.
[72] LI J C, LI S P, XIE Z Y, et al.Numerical Simulation of Incremental Sheet Forming Based on GTN Damage Model[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9): 2053-2065.

基金

国家自然科学基金(22272013,52205374); 重庆市自然科学基金面上项目(cstc2021jcyj-msxmX1047); 云南省地方本科高校基础研究联合专项资金(202101BA070001-260)

PDF(17712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/