Zn对Cu-20Sn-10Ti钎焊金刚石界面特征和耐磨性的影响

杜全斌, 姜雪, 崔冰, 陈广明, 李昂, 王蕾, 于奇, 方占江

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 97-108.

PDF(18218 KB)
PDF(18218 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 97-108. DOI: 10.3969/j.issn.1674-6457.2025.06.011
精密钎焊

Zn对Cu-20Sn-10Ti钎焊金刚石界面特征和耐磨性的影响

  • 杜全斌1,2, 姜雪3, 崔冰3*, 陈广明3, 李昂1, 王蕾1, 于奇4, 方占江2
作者信息 +

Effect of Zn on Interface Characteristics and Wear Resistance of Cu-20Sn-10Ti Brazed Diamond

  • DU Quanbin1,2, JIANG Xue3, CUI Bing3*, CHEN Guangming3, LI Ang1, WANG Lei1, YU Qi4, FANG Zhanjiang2
Author information +
文章历史 +

摘要

目的 改善Cu-20Sn-10Ti钎焊金刚石宏观形貌和界面区钎料合金显微组织,减少钎焊接头孔洞、裂纹和粗大脆性相等缺陷,提高钎焊金刚石工具的磨削性能。方法 采用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)和摩擦磨损试验机等设备,研究了Zn对Cu-Sn-Ti钎焊金刚石界面特性及磨削性能的影响规律。结果 当Zn质量分数为4.5%时,钎焊金刚石近界面区及钎料层没有产生裂纹和孔洞,具有最佳的宏观形貌和最适宜的金刚石出露度55%。界面区钎料合金显微组织主要由灰色α-Cu相和灰白CuSn3Ti5相组成,随着Zn含量的增加,CuSn3Ti5相逐渐细化,当Zn质量分数为4.5%时,细化效果最佳。不添加Zn时,钎焊金刚石表面形成了连续致密易剥离的TiC层,随着Zn含量的增加,TiC层逐渐变为断续长絮状、颗粒状,且TiC层厚度逐渐减小。当Zn质量分数为7.5%时,局部生成TiC且无法完全覆盖金刚石表面。随着Zn含量的增加,钎焊金刚石试样的摩擦因数、不均匀磨损率呈先减小后增大的趋势,去除量呈先增大后减小的趋势。当Zn质量分数为4.5%时,钎料金刚石试样具有最小的摩擦因数(0.25)和不均匀磨损率(16.67%)以及最大的材料去除量(49.15 mg)。结论 综合钎焊金刚石试样的宏观形貌、界面结合状态和磨削性能,在Cu-20Sn-10Ti钎料中添加Zn的最佳质量分数为4.5%。

Abstract

The work aims to improve the macroscopic morphology of Cu-20Sn-10Ti brazed diamond and the microstructure of the filler metal alloy in the interface region, reduce defects such as voids, cracks, and coarse brittle phases in the brazed joint, and enhance the grinding performance of the brazed diamond tools. Equipment such as scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometer (XRD), and friction and wear tester were used to study the influence of Zn on the interface characteristics and grinding performance of Cu-Sn-Ti brazed diamond. When the Zn content was 4.5wt.%, there were no cracks and voids in the near-interface region and the filler metal layer of the brazed diamond. It had the best macroscopic morphology and the most suitable diamond exposure degree of 55%. The microstructure of the filler metal alloy in the interface region was mainly composed of gray α-Cu phases and gray-white CuSn3Ti5 phases. With the increase of Zn content, CuSn3Ti5 phases were gradually refined, and the refinement effect was the best when the Zn content was 4.5wt.%. Without adding Zn, a continuous, dense, and easily peeled TiC layer was formed on the surface of the brazed diamond. As the Zn content increased, the TiC layer gradually changed to intermittent long-flocculent and granular, and the thickness of the TiC layer gradually decreased. When the Zn content was 7.5wt.%, TiC was locally generated and could not completely cover the diamond surface. With the increase of Zn content, the friction coefficient and non-uniform wear rate of the brazed diamond samples first decreased and then increased, while the removal amount first increased and then decreased. When the Zn content was 4.5wt.%, the brazed diamond sample had the smallest friction coefficient (0.25), the smallest non-uniform wear rate (16.67%), and the largest material removal amount (49.15 mg). In conclusion, considering the macroscopic morphology, interface bonding state, and grinding performance of the brazed diamond samples, the optimal Zn content added to the Cu-20Sn-10Ti filler metal is 4.5wt.%.

关键词

金刚石 / Cu-20Sn-10Ti钎料 / 显微组织 / 界面特征 / 磨削性能

Key words

diamond / Cu-20Sn-10Ti filler alloy / microstructure / interface characteristics / grinding performance

引用本文

导出引用
杜全斌, 姜雪, 崔冰, 陈广明, 李昂, 王蕾, 于奇, 方占江. Zn对Cu-20Sn-10Ti钎焊金刚石界面特征和耐磨性的影响[J]. 精密成形工程. 2025, 17(6): 97-108 https://doi.org/10.3969/j.issn.1674-6457.2025.06.011
DU Quanbin, JIANG Xue, CUI Bing, CHEN Guangming, LI Ang, WANG Lei, YU Qi, FANG Zhanjiang. Effect of Zn on Interface Characteristics and Wear Resistance of Cu-20Sn-10Ti Brazed Diamond[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 97-108 https://doi.org/10.3969/j.issn.1674-6457.2025.06.011
中图分类号: TG146.2   

参考文献

[1] 杨占尧. 金刚石含量对钎料耐磨性的影响[J]. 热加工工艺, 2019, 48(3): 226-228.
YANG Z Y.Effect of Diamond Content on Abrasive Resistance of Brazing Filler Metal[J]. Hot Working Technology, 2019, 48(3): 226-228.
[2] 轩闯, 向刚强, 廖燕玲, 等. 半导体加工用金刚石工具现状[J]. 超硬材料工程, 2021, 33(1): 41-49.
XUAN C, XIANG G Q, LIAO Y L, et al.Current Status of Diamond Tools for Semiconductor Processing Industry[J]. Superhard Material Engineering, 2021, 33(1): 41-49.
[3] CUI Z P, ZHANG C Y, ZHANG H J, et al.Wear Characteristics of the Pointed Diamond Tool in Ultraprecision and Micro Cutting of Al6061 V-Grooves[J]. Journal of Materials Processing Technology, 2022, 300: 117414.
[4] 杜帅, 陶洪亮, 黄明初, 等. CuSn15含量对无压烧结FeCoCu胎体及金刚石工具组织和性能影响[J]. 粉末冶金技术, 2023, 41(6): 481-489.
DU S, TAO H L, HUANG M C, et al.Effect of CuSn15 Content on the Structure and Properties of Pressureless Sintered FeCoCu Matrix and Diamond Tools[J]. Powder Metallurgy Technology, 2023, 41(6): 481-489.
[5] 黄诗展, 郭必成, 林其深, 等. 金刚石工具分段电镀中屏蔽层处理的新工艺及其自动化装备[J]. 电镀与涂饰, 2021, 40(13): 990-995.
HUANG S Z, GUO B C, LIN Q S, et al.A Novel Technology and Automatic Equipment for Shielding Layer Treatment in Selective Electroplating of Diamond Tool[J]. Electroplating & Finishing, 2021, 40(13): 990-995.
[6] 杨骄, 龙伟民, 鲍丽, 等. 铜基钎料的研究进展及应用[J]. 电焊机, 2022, 52(4): 21-28.
YANG J, LONG W M, BAO L, et al.Research Progress and Application of Copper-Based Brazing Filler Metal[J]. Electric Welding Machine, 2022, 52(4): 21-28.
[7] CUI B, CHEN J, LI H L, et al.Effect of Holding Time on Interfacial Reaction Layer Characteristics and Mechanical Performance of Brazed Diamonds with Cu-Sn-Ti-Ga Filler Metals[J]. Diamond and Related Materials, 2022, 123: 108826.
[8] 赫青山, 崔仲鸣, 傅玉灿, 等. 型面约束下的真空钎焊金刚石工艺及其等高性分析[J]. 焊接学报, 2020, 41(2): 39-42.
HE Q S, CUI Z M, FU Y C, et al.Vacuum Brazing Diamond Process under the Profile Constraint and Analysis of Agreed Height Abrasives[J]. Transactions of the China Welding Institution, 2020, 41(2): 39-42.
[9] 尹孝辉, 徐凡, 徐东, 等. 添加ZrC增强相的Cu-Sn-Ti钎料真空钎焊金刚石的微观结构和磨削性能的研究[J]. 机械工程学报, 2021, 57(18): 182-189.
YIN X H, XU F, XU D, et al.Research on Microstructure and Grinding Performance of Vacuum Brazed Diamond with ZrC Reinforced Cu-Sn-Ti Composite Alloys[J]. Journal of Mechanical Engineering, 2021, 57(18): 182-189.
[10] DUAN D Z, HAN F, DING J J, et al.Microstructure and Performance of Brazed Diamonds with Multilayer Graphene-Modified Cu-Sn-Ti Solder Alloys[J]. Ceramics International, 2021, 47(16): 22854-22863.
[11] CUI B, LIU Z W, DU Q B, et al.Mechanism of Mn in Controlling the Microscopic Characterization and Interfacial Properties of CuSnTiGa Filler Metal for Brazing Diamond Abrasives[J]. Diamond and Related Materials, 2024, 143: 110903.
[12] 高先哲, 肖冰, 管海军, 等. Cu-Sn-Ti钎料的改性设计及性能分析[J]. 金刚石与磨料磨具工程, 2018, 38(1): 32-36.
GAO X Z, XIAO B, GUAN H J, et al.Modification Design and Performance Analysis of Cu-Sn-Ti Solder[J]. Diamond & Abrasives Engineering, 2018, 38(1): 32-36.
[13] CHEN Z Y, MO Y K, NIE Z R.Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys[J]. Metallurgical and Materials Transactions A, 2013, 44(8): 3910-3920.
[14] 于新泉, 龙伟民, 钟素娟, 等. 一种活性钎料合金: CN106238962A[P].2016-12-21.
YU X Q, LONG W M, ZHONG S J, et al. A Type of Active Brazing Alloy: CN106238962A[P].2016-12-21.
[15] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138-23144.
LONG W M, HAO Q L, FU Y C, et al.Research Progress of Filler Metals for Brazing Diamond Tools[J]. Materials Reports, 2020, 34(23): 23138-23144.
[16] LI H L, CHEN J, CUI B, et al.Effects of Ga on Mechanical Properties and Microstructure of Cu-Sn-Ti Filler[J]. Physica Status Solidi (a), 2022, 219(2): 2100203.
[17] CHEN J G, WANG X K, LI X R, et al.Effects of Brazing Temperature and Holding Time on Wettability of Brazing Diamond and Brazing Interface Analysis[J]. Welding in the World, 2020, 64(10): 1763-1770.
[18] 宗福春, 葛素静, 钱伟涛, 等. 合金元素和浇注温度对AlSi9Cu3铝合金收缩率和流动性的影响[J]. 热加工工艺, 2021, 50(15): 45-47.
ZONG F C, GE S J, QIAN W T, et al.Effect of Alloy Elements and Pouring Temperature on Shrinkage and Fluidity of AlSi9Cu3 Aluminum Alloy[J]. Hot Working Technology, 2021, 50(15): 45-47.
[19] 朱文嘉, 徐凤仙, 唐丽, 等. In含量对SnBi36Ag0.5无铅焊料合金性能的影响[J]. 材料科学与工艺, 2022, 30(1): 76-82.
ZHU W J, XU F X, TANG L, et al.Effect of in Content on Properties of SnBi36Ag0.5 Lead-Free Solder Alloy[J]. Materials Science and Technology, 2022, 30(1): 76-82.
[20] DUAN D Z, XIAO B, WANG B, et al.Microstructure and Mechanical Properties of Pre-Brazed Diamond Abrasive Grains Using Cu-Sn-Ti Alloy[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 427-432.
[21] 孙茂才. 金属力学性能[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005.
SUN M C.Mechanical Properties of Metals[M]. Harbin: Harbin Institute of Technology Press, 2005.
[22] WU Q L, SUN H W, ZHAO H W, et al.Fabrication of Wear-Resistant Diamond/Ni-Based Composite Coatings via Induction Brazing[J]. International Journal of Refractory Metals and Hard Materials, 2025, 129: 107098.
[23] 王楠, 张雷, 纠永涛, 等. 钎焊温度对Cu-Sn-Ti-Ga钎料钎焊金刚石接头组织及性能的影响[J]. 材料研究与应用, 2023, 17(6): 1125-1133.
WANG N, ZHANG L, JIU Y T, et al.Effect of Brazing Temperature on Microstructure and Mechanical Properties of Brazed Diamond with Cu-Sn-Ti-Ga Solder[J]. Materials Research and Application, 2023, 17(6): 1125-1133.
[24] HUANG S F, TSAI H L, LIN S T.Effects of Brazing Route and Brazing Alloy on the Interfacial Structure between Diamond and Bonding Matrix[J]. Materials Chemistry and Physics, 2004, 84(2/3): 251-258.
[25] ZHANG M J, LI K W, HUANG Y B, et al.Impact of Ultrasonic Vibration on Microstructure and Mechanical Properties of Diamond in Laser Brazing with Ni-Cr Filler Alloy[J]. Ceramics International, 2022, 48(3): 4096-4104.
[26] CUI B, ZHAO W X, YAN P P, et al.Interfacial Characteristics and Grinding Performance of Diamond Specimens Brazed with Cu-Sn-Ti Alloy and Ti3AlC2-Metal Composite Filler Metal[J]. Diamond and Related Materials, 2023, 132: 109637.
[27] DUAN D Z, MA Y S, DING J J, et al.Effect of Multilayer Graphene Addition on Performance of Brazed Diamond Drill Bits with Ni-Cr Alloy and Its Mechanism[J]. Ceramics International, 2020, 46(10): 16684-16692.
[28] 朱玉锁, 孟兆洁, 周延军, 等. 干摩擦条件下载荷和频率对Cu-15Ni-8Sn合金摩擦磨损性能影响研究[J]. 精密成形工程, 2024, 16(9): 65-75.
ZHU Y S, MENG Z J, ZHOU Y J, et al.Effect of Load and Frequency on the Tribological Properties of Cu-15Ni-8Sn Alloy under Dry Friction Conditions[J]. Journal of Netshape Forming Engineering, 2024, 16(9): 65-75.

基金

河南省高校重点科研项目(24A460008); 河南省重点研发与推广专项科技攻关项目(242102220064,241111231600)

PDF(18218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/