Surface Induction Hardening Process of Ball Screw Material
YANG Lei1, HAO Qingle1*, DING Xiang2, YUAN Shifeng1, ZHAO Kaipeng1, WANG Lujun1, LONG Weimin1
Author information+
1. China Academy of Machinery Ningbo Academy of Intelligent Machine Tool Co., Ltd., Zhejiang Xiangshan 315700, China; 2. Nanjing Craft Equipment Manufacturing Co., Ltd., Nanjing 211161, China
The work aims to improve the production and processing accuracy of grinding ball screws for machine tools and enhance the accuracy retention and service life of ball screws for machine tools. The induction hardening hardness and effective quenching layer depth of ball screw blanks were confirmed according to different specifications of grinding screws used in machine tools. Commonly used grinding ball screw materials 4150 and GCr15 were used for sensor structure design research and finite element software COMSOL was adopted for electromagnetic simulation to concentrate the magnetic field of the sensor on the surface of the workpiece. The sensors were designed for the same specifications of 4150 and GCr15 materials for surface induction hardening and the differences in induction hardening between the two different materials were studied. By using the designed sensor for quenching process experimental research, it was found that two types of ball screws with the same hardening layer depth required different quenching processes. The induction hardening process of 4150 and GCr15 rod materials is studied. The research results can provide a theoretical basis of the sensor design for producing ball screws of different materials, improve the quenching accuracy of ball screw blanks, and contribute to enhancing the production accuracy and accuracy retention of grinding screws for machine tools.
YANG Lei, HAO Qingle, DING Xiang, YUAN Shifeng, ZHAO Kaipeng, WANG Lujun, LONG Weimin.
Surface Induction Hardening Process of Ball Screw Material[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 82-88 https://doi.org/10.3969/j.issn.1674-6457.2025.06.009
中图分类号:
TG141
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李杰, 谢福贵, 刘辛军, 等. 机电-刚柔耦合特性作用下线性进给系统动力学分析[J]. 机械工程学报, 2017, 53(17): 60-69. LI J, XIE F G, LIU X J, et al.Dynamic Modeling of a Linear Feed Axis Considering the Characteristics of the Electro-Mechanical and Rigid-Flexible Coupling[J]. Journal of Mechanical Engineering, 2017, 53(17): 60-69. [2] LONG W M, LIU D S, DONG X, et al.Laser Power Effects on Properties of Laser Brazing Diamond Coating[J]. Surface Engineering, 2020, 36(12): 1315-1326. [3] KIM D, AHN J, CAMPBELL O, et al.Investigations of a Robotic Test Bed with Viscoelastic Liquid Cooled Actuators[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2704-2714. [4] 白茹. 加工中心双驱进给系统动态特性研究[D]. 兰州: 兰州理工大学, 2014. BAI R.Research on Dynamic Characteristics Technology of Machining Center Double Ball Screw Feeding System[D]. Lanzhou: Lanzhou University of Technology, 2014. [5] OKWUDIRE C E, ALTINTAS Y.Hybrid Modeling of Ball Screw Drives with Coupled Axial, Torsional, and Lateral Dynamics[J]. Journal of Mechanical Design, 2009, 131(7): 071002. [6] 吴元徽. 滚珠丝杠表面感应淬火的质量控制[J]. 金属热处理, 2011, 36(1): 120-121. WU Y H.Quality Control of Surface Inductive Quenching for Ball Screw[J]. Heat Treatment of Metals, 2011, 36(1): 120-121. [7] 杨飞, 周长光, 翟光钰, 等. 极限工况下滚珠丝杠副疲劳失效研究分析[J]. 组合机床与自动化加工技术, 2024(9): 136-141. YANG F, ZHOU C G, ZHAI G Y, et al.The Research and Analysis of Fatigue Failure in Ball Screw under Extreme Operating Conditions[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(9): 136-141. [8] 丁霞, 王倩, 李保民, 等. 滚珠丝杠用材的质量检验和热处理工艺研究[J]. 热处理技术与装备, 2012, 33(1): 33-38. DING X, WANG Q, LI B M, et al.Quality Testing and Heat Treatment Process Research of Ball Screw Materials[J]. Heat Treatment Technology and Equipment, 2012, 33(1): 33-38. [9] 吴元徽. 表面淬火滚珠丝杠磨削裂纹的预防与控制[J]. 热加工工艺, 2011, 40(12): 204-206. WU Y H.Prevention and Controlling of Ball Screw Cracks after Surface Quenching[J]. Hot Working Technology, 2011, 40(12): 204-206. [10] 吴元徽. 滚珠丝杠的选材及热处理工艺分析[J]. 新技术新工艺, 2009(4): 57-58. WU Y H.Analysis of Ball Screw Material Selection and Heat Treatment Process[J]. New Technology & New Process, 2009(4): 57-58. [11] LONG W M, LIU D S, QIN J, et al.Wear Resistance of Laser Brazing Diamond Coating with and without Pre-Machining V-Groove on Diamond Surface[J]. Journal of Adhesion Science and Technology, 2023, 37(2): 319-333. [12] 胡珂, 魏国前, 闫梦煜, 等. 晶粒分布形态对焊趾短裂纹疲劳行为影响的模拟[J]. 机械强度, 2023, 45(1): 84-90. HU K, WEI G Q, YAN M Y, et al.Simulation of Effects of Grain Distribution Morphology on Fatigue Behavior of Short Cracks at Weld Toe[J]. Journal of Mechanical Strength, 2023, 45(1): 84-90. [13] 李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016, 28(3): 1-12. LI Z K, LEI J Z, XU H F, et al.Current Status and Development Trend of Bearing Steel in China and Abroad[J]. Journal of Iron and Steel Research, 2016, 28(3): 1-12. [14] 苏辉, 马冰, 依颖辉, 等. 42CrMo钢激光淬火组织和硬度的研究[J]. 兵器材料科学与工程, 2011, 34(2): 84-86. SU H, MA B, YI Y H, et al.Microstructure and Properties of 42CrMo after Laser Surface Melting and Quenching[J]. Ordnance Material Science and Engineering, 2011, 34(2): 84-86. [15] ZHANG L, LONG W M, DU D, et al.The Microstructure and Wear Properties of Diamond Composite Coatings on TC4 Made by Induction Brazing[J]. Diamond and Related Materials, 2022, 125: 109032. [16] SUNG H A, CHOON M L.A Study on Large-area Laser Processing Analysis in Consideration of the Moving Heat Source[J]. International Journal of Precision Engineering And Manufacturing, 2023, 12(2): 285-292. [17] 罗家元, 李鑫, 谭超. 焊接残余应力对高强钢点焊接头裂纹扩展及疲劳性能的影响[J]. 机械强度, 2024, 46(2): 439-445. LUO J Y, LI X, TAN C.Effect of Welding Residual Stress on Crack Propagation and Fatigue Performance of High Strength Steel Spot Welding Joint[J]. Journal of Mechanical Strength, 2024, 46(2): 439-445. [18] LONG W M, LIU D S, WU A P, et al.Influence of Laser Scanning Speed on the Formation Property of Laser Brazing Diamond Coating[J]. Diamond and Related Materials, 2020, 110: 108085. [19] 王秉楠, 贾玉鑫, 王姗姗, 等. 高淬透性高碳铬轴承钢的组织与性能[J]. 金属热处理, 2024, 49(9): 31-35. WANG B N, JIA Y X, WANG S S, et al.Microstructure and Properties of High Hardenability High-Carbon Chromium Bearing Steel[J]. Heat Treatment of Metals, 2024, 49(9): 31-35. [20] 孙小东, 王云广, 王红伟, 等. 高淬透性轴承钢等温淬火工艺研究[J]. 热处理技术与装备, 2020, 41(4): 27-29. SUN X D, WANG Y G, WANG H W, et al.Research on Isothermal Quenching of High Hardenability Bearing Steel[J]. Heat Treatment Technology and Equipment, 2020, 41(4): 27-29. [21] 闫野, 丁霞, 李保民, 等. Cr-Mo钢精密滚珠丝杠表面硬化层的失效分析[J]. 金属热处理, 2013, 38(2): 128-131. YAN Y, DING X, LI B M, et al.Failure Analysis of Surface Hardened Layer on Cr-Mo Steel Precision Ball Screw[J]. Heat Treatment of Metals, 2013, 38(2): 128-131. [22] 孙徕博, 黄陆军, 黄瑞生, 等. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286. SUN L B, HUANG L J, HUANG R S, et al.Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. Acta Metallurgica Sinica, 2024, 60(3): 273-286. [23] 乔瑞林, 龙伟民, 秦建, 等. YG8/GH4169异种材料钎焊接头残余应力的数值模拟[J]. 焊接学报, 2024, 45(3): 68-74. QIAO R L, LONG W M, QIN J, et al.Numerical Simulation of Residual Stress in YG8/GH4169 Dissimilar Material Brazed Joints[J]. Transactions of the China Welding Institution, 2024, 45(3): 68-74. [24] 杨浩, 陈睿博, 杨雷, 等. 基于硬质合金/钢异质钎焊感应加热有限元仿真[J]. 焊接, 2024(9): 23-28. YANG H, CHEN R B, YANG L, et al.Finite Element Simulation of Induction Heating Based on Cemented Carbide/Steel Heterogeneous Brazing[J]. Welding & Joining, 2024(9): 23-28.