自然时效对键合银丝拉伸性能的影响

李元, 李培艳, 郭鹏, 马帅杰, 王梦超, 郭军华, 黄成志

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 66-73.

PDF(1624 KB)
PDF(1624 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 66-73. DOI: 10.3969/j.issn.1674-6457.2025.06.007
精密钎焊

自然时效对键合银丝拉伸性能的影响

  • 李元, 李培艳, 郭鹏, 马帅杰, 王梦超, 郭军华, 黄成志*
作者信息 +

Effect of Natural Aging on Tensile Properties of Silver Bonding Wire

  • LI Yuan, LI Peiyan, GUO Peng, MA Shuaijie, WANG Mengchao, GUO Junhua, HUANG Chengzhi*
Author information +
文章历史 +

摘要

目的 厘清自然时效状态下纯银键合线拉伸性能的演变规律,探索超细丝拉伸性能波动的原因,为高稳定性键合丝的制备提供指导。方法 首先选择同一批次纯银坯料,调控拉拔与中间退火工序,制备不同等效应变的超细丝;其次在常温下对拉拔态超细丝进行时效处理;最后测试不同时效时间下超细丝的拉断力与延伸率,分析其演变规律。结果 拉拔态超细丝的拉断力随自然时效时间的延长而不断减小;应变越高,初始抗拉强度越高,但不同应变的超细丝抗拉强度均逐渐稳定于约180 MPa;延伸率随时效时间的延长而不断增大,但其演变时间曲线的特征节点滞后于拉断力的特征节点;不同应变超细丝初始延伸率的绝对波动较小,在时效后期,绝对波动值呈杂乱波动状态;延伸率相对波动初始较大,当时效0~2 d时,出现相对波动高峰期,高峰期持续1~5 d,后续相对波动会减小。结论 纯银超细丝拉伸性能自然时效演变存在孕育期、快变期、稳定期;延伸率的相对波动存在起始期、高峰期、稳定期;在拉伸性能的快变期、延伸率相对波动的高峰期制备键合丝易导致性能不稳定。

Abstract

The work aims to clarify the evolution law of tensile properties of silver bonding wires under natural aging and explore the reasons for the fluctuation of tensile properties of superfine wires. First, the same batch of pure silver materials were selected to prepare ultrafine wires with different specifications of strain through adjustment of the drawing and intermediate annealing processes. Then, the drawn ultrafine wires were aged at room temperature. Finally, the breaking force and elongation of the ultrafine wires were tested with different aging time, and the evolution law was analyzed. The results showed that the tensile force of the drawn superfine wires decreased with natural aging. The higher the strain, the higher the initial tensile strength. However, the superfine wires with different strains was gradually stable at about 180 MPa. The elongation increased with aging, but the evolution lagged behind the tensile force. The absolute fluctuation of the initial elongation rate of ultrafine wires with different strains was relatively small. In the later stage of aging, the absolute fluctuation showed a disorderly fluctuation. The relative fluctuation of elongation was relatively large at the beginning. After aging for 0-2 d, the peak period of relative fluctuation occurred, and the peak period lasted for 1-5 d. Subsequently, the relative fluctuation would decrease. The natural aging evolution of tensile properties of silver bonding wires has an incubation period, a rapid change period and a stable period, and the relative fluctuation of elongation has an initial period, a peak period and a stable period. The preparation of bonding wires in the rapid change period and the peak period of relative fluctuation of elongation is easy to lead to unstable properties.

关键词

键合银丝 / 自然时效 / 再结晶 / 拉伸性能 / 延伸率波动

Key words

silver bonding wire / natural aging / recrystallization / tensile property / elongation fluctuation

引用本文

导出引用
李元, 李培艳, 郭鹏, 马帅杰, 王梦超, 郭军华, 黄成志. 自然时效对键合银丝拉伸性能的影响[J]. 精密成形工程. 2025, 17(6): 66-73 https://doi.org/10.3969/j.issn.1674-6457.2025.06.007
LI Yuan, LI Peiyan, GUO Peng, MA Shuaijie, WANG Mengchao, GUO Junhua, HUANG Chengzhi. Effect of Natural Aging on Tensile Properties of Silver Bonding Wire[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 66-73 https://doi.org/10.3969/j.issn.1674-6457.2025.06.007
中图分类号: TG15   

参考文献

[1] LI Y, XU L Y, ZHAO L, et al.Inhibition of Roof-Type Cu6Sn5 Grains on Migration of Cu Atoms under Temperature Gradient[J]. Journal of Materials Science, 2024, 59(2): 669-685.
[2] YU W, CHENG S C, LI Z Y, et al.The Application of Multi-Scale Simulation in Advanced Electronic Packaging[J]. Fundamental Research, 2024, 4(6): 1442-1454.
[3] MARQUES V M F, WUNDERLE B, JOHNSTON C, et al. Nanomechanical Characterization of Sn-Ag-Cu/Cu Joints: Part 2: Nanoindentation Creep and Its Relationship with Uniaxial Creep as a Function of Temperature[J]. Acta Materialia, 2013, 61(7): 2471-2480.
[4] LI Y, XU L Y, JING H Y, et al.Homogeneous Dispersion of Graphene and Interface Metallurgical Bonding in Sn-Ag-Cu Alloy Induced by Ball Milling[J]. Materials Science and Engineering: A, 2021, 824: 141823.
[5] 李元, 徐连勇, 高宇, 等. 纳米压痕研究石墨烯增强Sn-Ag-Cu钎料焊点的高温蠕变行为[J]. 机械工程学报, 2022, 58(2): 50-57.
LI Y, XU L Y, GAO Y, et al.High Temperature Creep Behavior of Sn-Ag-Cu Solder Joints Reinforced by Graphene via Nanoindentation[J]. Journal of Mechanical Engineering, 2022, 58(2): 50-57.
[6] AN B, ZHOU H L, CAO J, et al.A Review of Silver Wire Bonding Techniques[J]. Micromachines, 2023, 14(11): 2129.
[7] LU Q B, LONG W M, ZHONG S J, et al.TZM/Graphite Interface Behavior in High-Temperature Brazing by Ti-Based Brazing Filler Materials[J]. Welding in the World, 2020, 64(11): 1877-1885.
[8] ZHANG S N, LONG W M, LI P Y, et al.Low-Temperature Lead-Free SnBiIn Solder for Electronic Packaging[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(10): 690.
[9] 刘劲松, 周岩, 王松伟, 等. 单晶铜拉拔过程组织及织构演变[J]. 精密成形工程, 2024, 16(9): 76-83.
LIU J S, ZHOU Y, WANG S W, et al.Evolution of Microstructure and Texture in Drawn Single Crystal Copper[J]. Journal of Netshape Forming Engineering, 2024, 16(9): 76-83.
[10] 陈永泰, 谢明, 王松, 等. 贵金属键合丝材料的研究进展[J]. 贵金属, 2014, 35(3): 66-70.
CHEN Y T, XIE M, WANG S, et al.Research Progress on the Precious Metal Bonding Wire Materials[J]. Precious Metals, 2014, 35(3): 66-70.
[11] 陆裕东, 何小琦, 恩云飞. 三维封装中引线键合技术的实现与可靠性[J]. 微电子学, 2009, 39(5): 710-713.
LU Y D, HE X Q, EN Y F.Implementation and Reliability of Wire-Bonding for 3-D Packages[J]. Microelectronics, 2009, 39(5): 710-713.
[12] CHENG X R, DING Z M, DUAN C, et al.Research on Quality Control of Thermal Ultrasonic Wire Bonding Based on PFMEA and SPC[C]//2023 24th International Conference on Electronic Packaging Technology (ICEPT). Shihezi City, China. IEEE, 2023: 1-6.
[13] KRIVOVITCA A, SHAH U, GUSTAFSSON A, et al.Cross-over Wire-Bonding for Millimeter-Wave Applications[J]. IEEE Electron Device Letters, 2023, 44(12): 2019-2022.
[14] ZHOU H L, ZHANG Y C, CAO J, et al.Research Progress on Bonding Wire for Microelectronic Packaging[J]. Micromachines, 2023, 14(2): 432.
[15] YOO Y R, KIM G, JEON S M, et al.Influence of HCl Concentration on Corrosion Behavior between Au or Cu Bonding Wires and the Bond Pad for Semiconductor Packaging[J]. Materials, 2023, 16(23): 7275.
[16] GAN C L, HASHIM U.Evolutions of Bonding Wires Used in Semiconductor Electronics: Perspective over 25 Years[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 4412-4424.
[17] ROSLI S A, JALAR A, ABU BAKAR M.Quantification of Corrosion on Cu Wire Bonding on Ag-Plated Lead Frame in HCl for Automotive Electronic Application[J]. International Journal of Automotive and Mechanical Engineering, 2024, 21(3): 11596-11605.
[18] ZHOU H L, CHANG A D, FAN J L, et al.Copper Wire Bonding: A Review[J]. Micromachines, 2023, 14(8): 1612.
[19] KUMARAVEL D K, DURAI K A J, NAIR S M, et al. Enhancing Cu Wire-Bonding Reliability by a Cu-Selective Passivation Coating[C]//2024 IEEE 74th Electronic Components and Technology Conference (ECTC). Denver, CO, USA. IEEE, 2024: 1206-1212.
[20] KUO B H, TSAI D C, HUANG Y L, et al.Effect of Alloying Au on the Microstructural, Mechanical and Electrical Properties of Ag-Based Alloy Wires[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9396-9409.
[21] XIAO Y C, TANG H Y, ZHANG H H, et al.Au-Coated Ag Alloy Bonding Wires with Enhanced Oxidation Resistance for Electronic Packaging Applications[J]. Microelectronics International, 2023, 40(2): 96-103.
[22] WEI X, XIN D, MORISAKO I, et al.Reliability Evaluation of Thick Ag Wire Bonding on Ni Pad for Power Devices[J]. Microelectronics Reliability, 2024, 152: 115304.
[23] 刘泽光, 柳青, 杨富陶, 等. 纯银自然时效的软化特性[J]. 贵金属, 1991, 12(2): 25-33.
LIU Z G, LIU Q, YANG F T, et al.Study on the Softening Properties of Natural Aged Pure Silver[J]. Precious Metals, 1991, 12(2): 25-33.
[24] 杨富陶, 刘泽光, 唐敏. 抗时效软化的银材[J]. 贵金属, 1992, 13(3): 22-25.
YANG F T, LIU Z G, TANG M.An Anti-Age Softening Silver Material[J]. Precious Metals, 1992, 13(3): 22-25.
[25] 石路, 王力军, 王佳夫, 等. 抗自然时效软化银饰品材料的研究[J]. 稀有金属材料与工程, 2000, 29(5): 350-353.
SHI L, WANG L J, WANG J F, et al.Study of the Resistance to Natural Aging and Softening of Ornamental Silver[J]. Rare Metal Materials and Engineering, 2000, 29(5): 350-353.
[26] 张思敬, 刘大全. 一种银带轧制新工艺[J]. 新技术新工艺, 2005(7): 42-43.
ZHANG S J, LIU D Q.A New Process for Silver Belt Cold Rolling[J]. New Technology & New Process, 2005(7): 42-43.
[27] 周许升, 龙伟民, 裴夤崟, 等. Sn-0.7Cu无铅钎料显微组织及力学性能在时效过程中的演变[J]. 焊接, 2013(11): 16-19.
ZHOU X S, LONG W M, PEI Y Y, et al.Evolution of Microstructure and Mechanical Properties of Sn-0.7Cu Lead-Free Solder in Aging Treatment[J]. Welding & Joining, 2013(11): 16-19.
[28] 黄俊兰, 钟素娟, 赵丹, 等. 自然时效时间对ZnAl15钎料显微组织与力学性能的影响[J]. 失效分析与预防, 2013, 8(1): 20-24.
HUANG J L, ZHONG S J, ZHAO D, et al.Effects of Natural Aging Time on Microstructure and Mechanical Properties of ZnAl15 Filler Metal[J]. Failure Analysis and Prevention, 2013, 8(1): 20-24.
[29] 周许升, 龙伟民, 乔培新, 等. 时效处理对Sn-XAg- 0.7Cu无铅钎料显微组织和力学性能的影响[J]. 焊接, 2013(9): 38-41.
ZHOU X S, LONG W M, QIAO P X, et al.Influence of Aging Treatment on Microstructure and Mechanical Properties of Sn-XAg-0.7Cu Lead-Free Solder[J]. Welding & Joining, 2013(9): 38-41.
[30] 杨帆, 骆峰, 刘兵, 等. 2年自然时效对超压强化铜管爆破压力的影响[J]. 机械强度, 2023, 45(2): 357-365.
YANG F, LUO F, LIU B, et al.Effect of Two Years Natural Aging on Burst Pressure of over-Pressure Copper Tube[J]. Journal of Mechanical Strength, 2023, 45(2): 357-365.
[31] 宋友宝, 龙伟民, 马佳, 等. 轧制变形量对高纯银组织和电阻率的影响[J]. 电工材料, 2016(2): 7-9.
SONG Y B, LONG W M, MA J, et al.Influence of Rolling Deformation Ratio on Microstructure and Resistivity of High-Purity Silver[J]. Electrical Engineering Materials, 2016(2): 7-9.
[32] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 196-209.
HU G X, CAI X, RONG Y H.Fundamentals of Materials Science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 196-209.
[33] 醋强一, 刘治虎, 田沣, 等. 机载电子设备元器件焊点热疲劳寿命研究[J]. 机械强度, 2022, 44(3): 691-695.
CU Q Y, LIU Z H, TIAN F, et al.Research on Thermal Fatigue Life of Solder Joints for Airborne Electronic Equipment[J]. Journal of Mechanical Strength, 2022, 44(3): 691-695.
[34] LONG W M, LI S N, DU D, et al.Morphological Evolution and Development Trend of Brazing Materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781-3790.

基金

河南省重点研发专项(231111231500); 中原学者获资助项目(244000510004)

PDF(1624 KB)

Accesses

Citation

Detail

段落导航
相关文章

/