异质材料钎焊连接润湿性改善与调控策略研究进展

李胜男, 池强, 封辉, 张雷, 纠永涛, 龙伟民

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 46-55.

PDF(4146 KB)
PDF(4146 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 46-55. DOI: 10.3969/j.issn.1674-6457.2025.06.005
精密钎焊

异质材料钎焊连接润湿性改善与调控策略研究进展

  • 李胜男1, 池强1*, 封辉1, 张雷2, 纠永涛2, 龙伟民3
作者信息 +

Research Progress on Wettability Improvement and Regulation Strategies in Brazing of Dissimilar Materials

  • LI Shengnan1, CHI Qiang1*, FENG Hui1, ZHANG Lei2, JIU Yongtao2, LONG Weimin3
Author information +
文章历史 +

摘要

钎焊具有接头应力小、变形小、可连接异质材料等优点,广泛应用于石油化工、电子封装、能源电力和航空航天等领域。异质材料界面物性差异高、钎焊难度较大,钎料润湿母材是实现钎焊的基础,润湿性问题已成为制约异质材料高可靠连接的关键挑战。本文通过系统的文献调研和分析,详细阐述了润湿本质及其在钎焊中的表征方法。通过对润湿性的影响因素进行分析,总结了改善途径和调控策略,包括改善钎料成分、制定合适的钎焊工艺、改变母材表面的状态等。揭示了提高润湿性的机理,即促进钎料和母材元素之间的溶解和反应,降低界面能。研究结果可用于指导研发新型钎料、制定钎焊工艺,从而提高钎焊接头的质量,为复杂异质材料构件的高精度、高效率、高性能钎焊提供了重要的技术支撑。

Abstract

Brazing is widely used in petrochemical industry, electronic packaging, energy, electric power, aerospace and other fields because of its advantages of low joint stress, small deformation, and the ability to connect dissimilar materials, etc. Brazing dissimilar materials is difficult since the significant physical properties of the interfaces. The wettability of brazing filler metal on base metal is the basis for brazing, and the wettability problem has become a key challenge restricting the high-reliability joining of dissimilar materials. The mechanism of wetting and its characterization in brazing were described in detail through systematic literature investigation and analysis. Through the analysis on the affecting factors of wettability, the improvement methods and regulation strategies were summarized, including perfecting the composition of brazing filler metal, formulating a suitable brazing process, and changing the state of the base metal surface. The mechanism of improving wettability was revealed, including promoting the dissolution and reaction between filler metal and base metal elements, and reducing the interface energy. The research results can be used to guide the research and development of new brazing filler metals and the formulation of brazing processes, so as to improve the quality of brazed joints and provide important technical support for high-precision, high-efficiency and high-performance brazing of complex dissimilar materials.

关键词

钎焊 / 润湿角 / 反应润湿 / 非反应润湿 / 润湿性影响因素

Key words

brazing / wetting angle / reactive wetting / nonreactive wetting / affecting factors of wettability

引用本文

导出引用
李胜男, 池强, 封辉, 张雷, 纠永涛, 龙伟民. 异质材料钎焊连接润湿性改善与调控策略研究进展[J]. 精密成形工程. 2025, 17(6): 46-55 https://doi.org/10.3969/j.issn.1674-6457.2025.06.005
LI Shengnan, CHI Qiang, FENG Hui, ZHANG Lei, JIU Yongtao, LONG Weimin. Research Progress on Wettability Improvement and Regulation Strategies in Brazing of Dissimilar Materials[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 46-55 https://doi.org/10.3969/j.issn.1674-6457.2025.06.005
中图分类号: TG454   

参考文献

[1] LONG W M, ZHAO Y, ZHONG S J, et al.Research Progress on Intermetallic Compounds in Copper-Aluminum Brazed Joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7-13.
[2] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138-23144.
LONG W M, HAO Q L, FU Y C, et al.Research Progress of Filler Metals for Brazing Diamond Tools[J]. Materials Reports, 2020, 34(23): 23138-23144.
[3] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1-4.
LONG W M, ZHANG G X, ZHANG Q K, et al.In-Situ Synthesis of High Strength Ag Brazing Filler Metals during Brazing Process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1-4.
[4] 龙伟民, 刘大双, 吴爱萍, 等. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响[J]. 机械工程学报, 2023, 59(12): 225-235.
LONG W M, LIU D S, WU A P, et al.Effect of Diamond Particle Size and Addition on Wear Resistance of Atmospheric Induction Brazing Coating[J]. Journal of Mechanical Engineering, 2023, 59(12): 225-235.
[5] YOUNG T. An Essay on the Cohesion of Fluids[J]. Philosophical Transactions of the Royal Society of London Series I, 1805, 95: 65-87.
[6] DUPRE A.Mechanical Theory of Heat[M]. Paris: Gauthier-Villars, 1869: 369-375.
[7] 朱定一, 金志浩, 王永兰, 等. 反应型液固界面润湿性的数学表征[J]. 西安交通大学学报, 1997, 31(10): 94-99.
ZHU D Y, JIN Z H, WANG Y L, et al.Mathematical Description of Wettability of Reaction Type Liquid Solid Interface[J]. Journal of Xi’an Jiaotong University, 1997, 31(10): 94-99.
[8] CASSIE A B D, BAXTER S. Wettability of Porous Surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[9] BAXTER S.Wetting and Contact-Angle Hysteresis[J]. Nature, 1950, 165: 198.
[10] WENZEL R N.Surface Roughness and Contact Angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.
[11] 张姝斌. 多孔银表面润湿性的研究[D]. 大连: 大连交通大学, 2012: 10-13.
ZHANG S B.Study on Wettability of Porous Silver Surface[D]. Dalian: Dalian Jiaotong University, 2012: 10-13.
[12] 程帅, 董云开, 张向军. 规则粗糙固体表面液体浸润性对表观接触角影响的研究[J]. 机械科学与技术, 2007, 26(7): 822-827.
CHENG S, DONG Y K, ZHANG X J.Study of the Influence of Apparent Contact Angle on Regular Rough Surface Considering Liquid Wetting Properties[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(7): 822-827.
[13] 钱健行. 润湿角测定装置设计及其应用研究[D]. 沈阳: 东北大学, 2014: 1-11.
QIAN J X.Design and Application of Wetting Angle Measuring Device[D]. Shenyang: Northeastern University, 2014: 1-11.
[14] FERRO A C, DERBY B.Development of a Micro-Droplet Technique for Wettability Studies: Application to the Al-Si/SiC System[J]. Scripta Metallurgica et Materialia, 1995, 33(5): 837-842.
[15] RIVOLLET I, CHATAIN D, EUSTATHOPOULOS N.Simultaneous Measurement of Contact Angles and Work of Adhesion in Metal-Ceramic Systems by the Immersion-Emersion Technique[J]. Journal of Materials Science, 1990, 25(7): 3179-3185.
[16] MORTENSEN A, WONG T.Infiltration of Fibrous Preforms by a Pure Metal: Part Ⅲ. Capillary Phenomena[J]. Metallurgical Transactions A, 1990, 21(8): 2257-2263.
[17] 龙伟民, 刘大双, 王博, 等. 铝微粉对大气环境感应钎涂金刚石涂层性能影响[J]. 焊接学报, 2021, 42(12): 67-71.
LONG W M, LIU D S, WANG B, et al.Effect of Aluminum Powder on Properties of Induction Braze Coated Diamond Layers in Atmospheric Environment[J]. Transactions of the China Welding Institution, 2021, 42(12): 67-71.
[18] CHEN T, HE P, XU T Z.Investigation of Wetting Behavior and Brazing Reliability of Zn-15Al-xGa Filler Metals in Cu/Al Joints[J]. Journal of Alloys and Compounds, 2025, 1010: 177252.
[19] LONG W M, LI S N, DU D, et al.Morphological Evolution and Development Trend of Brazing Materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781-3790.
[20] FU W, SONG X G, ZHAO Y X, et al.Effect of Ti Content on the Wetting Behavior of Sn0.3Ag0.7Cu/AlN System[J]. Materials & Design, 2017, 115: 1-7.
[21] FERNANDEZ J M, ASTHANA R, SINGH M, et al.Active Metal Brazing of Silicon Nitride Ceramics Using a Cu-Based Alloy and Refractory Metal Interlayers[J]. Ceramics International, 2016, 42(4): 5447-5454.
[22] 隋然, 林巧力. SnAgCu-xTi在单晶硅表面的润湿行为[J]. 焊接学报, 2020, 41(4): 90-96.
SUI R, LIN Q L.Wetting Behavior of Monocrystalline Si by SnAgCu-xTi Alloys[J]. Transactions of the China Welding Institution, 2020, 41(4): 90-96.
[23] 李锴, 张小勇, 陆艳杰, 等. 金属Nb对Co基钎料焊接的影响[J]. 稀有金属, 2013, 37(5): 744-749.
LI K, ZHANG X Y, LU Y J, et al.Influence of Nb on Co-Based Brazing Filler Metal[J]. Chinese Journal of Rare Metals, 2013, 37(5): 744-749.
[24] FERRO A C, DERBY B.Wetting Behaviour in the Al-Si/SiC System: Interface Reactions and Solubility Effects[J]. Acta Metallurgica et Materialia, 1995, 43(8): 3061-3073.
[25] 李颖, 张雷, 纠永涛, 等. Ag-Cu-In-Ti钎料的成分设计与优化[J]. 机械制造, 2024, 62(9): 11-15.
LI Y, ZHANG L, JIU Y T, et al.Composition Design and Optimization of Ag-Cu-in-Ti Brazing Metal[J]. Machinery, 2024, 62(9): 11-15.
[26] 徐佳琛, 傅玉灿, 杨燕, 等. Ag10CuZnSn-xIn-yCe低银钎料组织及性能[J]. 焊接学报, 2024, 45(6): 113-120.
XU J C, FU Y C, YANG Y, et al.Microstructure and Properties of Ag10CuZnSn-xIn-yCe Low Silver Filler Metal[J]. Transactions of the China Welding Institution, 2024, 45(6): 113-120.
[27] GE X Z, NIE K B, DENG K K, et al.Development of a New Mg-25Al-5Zn Filler Metal Containing Trace Y for Brazing AZ91D Magnesium Alloy[J]. Materials Chemistry and Physics, 2024, 328: 130024.
[28] SONG X R, LI H J, ZENG X R.Brazing of C/C Composites to Ti6Al4V Using Multiwall Carbon Nanotubes Reinforced TiCuZrNi Brazing Alloy[J]. Journal of Alloys and Compounds, 2016, 664: 175-180.
[29] BA J, ZHENG X H, NING R, et al.Brazing of SiO2-BN Modified with in Situ Synthesized CNTS to Ti6Al4V Alloy by TiZrNiCu Brazing Alloy[J]. Ceramics International, 2018, 44(9): 10210-10214.
[30] LIU D, CHEN B, JIN G B, et al.Interfacial Characteristics in CNTS-AgCuTi Systems[J]. Chinese Journal of Aeronautics, 2022, 35(4): 450-460.
[31] 祖家泽, 马佳, 秦建, 等. 航空航天领域常用高温钎料研究现状[J]. 精密成形工程, 2024, 16(7): 191-204.
ZU J Z, MA J, QIN J, et al.Current Research Status of Commonly Used High-Temperature Brazing Filler Metal in the Aerospace Field[J]. Journal of Netshape Forming Engineering, 2024, 16(7): 191-204.
[32] ZHOU Y H, LIU D, NIU H W, et al.Vacuum Brazing of C/C Composite to TC4 Alloy Using Nano-Al2O3 Strengthened AgCuTi Composite Filler[J]. Materials & Design, 2016, 93: 347-356.
[33] 李淳, 郑祖金, 亓钧雷, 等. AgCu+SiC复合钎料中SiC含量对Al2O3/TC4接头组织和性能的影响[J]. 焊接学报, 2019, 40(12): 11-16.
LI C, ZHENG Z J, QI J L, et al.Effect of the SiC Content in the Ag-Cu+SiC Composite Brazing Filler on the Microstructure and Mechanical Properties of the Al2O3/TC4 Brazing Joint[J]. Transactions of the China Welding Institution, 2019, 40(12): 11-16.
[34] LEE I K, SHEU H H, HSU H Y.The Effects of Graphene Content on the Mechanical Properties and Thermal Conductivity of Inconel 718 Superalloy Brazed Using BNi-2/Graphene Composite Filler Metal[J]. Results in Physics, 2020, 16: 102828.
[35] ANUAR N E E, SINGH A, KIT M L, et al. Investigation on the Thermal and Wettability Properties Aided with Mechanical Test Simulation of Tin (Sn) - Bismuth (Bi) Solder Alloy at Low Reflow Temperatures[J]. Key Engineering Materials, 2024, 982: 99-114.
[36] CHEN J G, WANG X K, LI X R, et al.Effects of Brazing Temperature and Holding Time on Wettability of Brazing Diamond and Brazing Interface Analysis[J]. Welding in the World, 2020, 64(10): 1763-1770.
[37] 邹家生, 许如强, 赵其章, 等. 铝基钎料在SiC及SiCp/6061复合材料上的润湿性研究[J]. 材料开发与应用, 2003, 18(4): 5-8.
ZOU J S, XU R Q, ZHAO Q Z, et al.Wettability of Aluminum Base Filler Metals on SiC and SiCp/6061 Composites[J]. Development and Application of Materials, 2003, 18(4): 5-8.
[38] LAURENT V, CHATAIN D, EUSTATHOPOULOS N.Wettability of SiC by Aluminium and Al-Si Alloys[J]. Journal of Materials Science, 1987, 22(1): 244-250.
[39] AMIRNASIRI A, MIRSALEHI S E.Investigation of Interfacial Reactions and Wetting Behavior of Boron Carbide by AMS 4777 Brazing Alloy[J]. Ceramics International, 2021, 47(24): 34414-34424.
[40] XU H F, ZHAO Y, YANG J, et al.Investigation on Wetting Behavior and Mechanism of AgCu-Xwt.%Ti Filler Metal/AlN Ceramic Reactive Wetting System: Experiments and First-Principles Calculations[J]. Journal of Alloys and Compounds, 2021, 869: 159323.
[41] LU Y F, WANG X X, SHI J J, et al.Multiscale Consideration of Mechanism Revealing in Diamond Brazing with a Novel NiTiZrCrVAl Amorphous Filler Alloy: First-Principles and Experimental Perspective[J]. Journal of Materials Research and Technology, 2025, 35: 3811-3824.
[42] 王慧, 薛松柏, 陈文学, 等. 不同钎剂对Sn-Zn系无铅钎料润湿特性的影响[J]. 焊接学报, 2009, 30(1): 5-8.
WANG H, XUE S B, CHEN W X, et al.Effects of Different Fluxes on the Characteristics of Sn-Zn Solders[J]. Transactions of the China Welding Institution, 2009, 30(1): 5-8.
[43] 陈方, 杜长华, 黄福祥, 等. Sn-0.7Cu无铅钎料对铜引线材料的润湿性[J]. 材料导报, 2004, 18(9): 99-101.
CHEN F, DU C H, HUANG F X, et al.Wettabinity of Lead-Free Solder Sn-0.7Cu on the Surface of Copper[J]. Materials Review, 2004, 18(9): 99-101.
[44] GUI Z X, HU X W, JIANG X X, et al.Interfacial Reaction, Wettability, and Shear Strength of Ultrasonic-Assisted Lead-Free Solder Joints Prepared Using Cu-GNSS-Doped Flux[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(19): 24507-24523.
[45] 黄俊兰, 龙伟民, 董显. 铜磷锡药皮钎料的润湿性能研究[J]. 热加工工艺, 2021, 50(3): 141-144.
HUANG J L, LONG W M, DONG X.Study on Wettability Property of Copper Phosphorus Tin Flux Coated Brazing Filler Metal[J]. Hot Working Technology, 2021, 50(3): 141-144.
[46] 浦娟, 薛松柏, 吴铭方, 等. Ga2O3对Ag30CuZnSn药芯银钎料钎缝组织及钎焊接头性能的影响[J]. 焊接学报, 2020, 41(7): 46-52.
PU J, XUE S B, WU M F, et al.Effect of Ga2O3 on of Microstructure and Properties of Brazed Joints Obtained by Ag30CuZnSn Flux Cored Brazing Filler Metal and Brass[J]. Transactions of the China Welding Institution, 2020, 41(7): 46-52.
[47] ZHANG C H, CHEN H Z, YANG W P, et al.Effect of the Surface States of 1Cr18Ni9Ti Stainless Steel on Mn-Based Brazing Alloy Wetting[J]. Coatings, 2022, 12(9): 1328.
[48] SHEN Y X, LI Z L, HAO C Y, et al.A Novel Approach to Brazing C/C Composite to Ni-Based Superalloy Using Alumina Interlayer[J]. Journal of the European Ceramic Society, 2012, 32(8): 1769-1774.
[49] LI H Y, XIA H B, LI L Q, et al.Enhancing the Reliability of Laser Welded-Brazed Aluminum/Stainless Steel Joints via Laser-Chemical Hybrid Surface Texturing[J]. Thin-Walled Structures, 2024, 199: 111780.
[50] LI S N, LU Q B, DU D, et al.Effect of C/C Composite Surface Pretreatment on Properties of Brazed Joint[J]. Welding in the World, 2022, 66(1): 61-68.
[51] BA J, JI X, WANG B, et al.Microstructure Design of C/C Composites through Electrochemical Corrosion for Brazing to Nb[J]. Journal of Materials Science & Technology, 2022, 104: 33-40.
[52] LIU B S, YAN Y T, LIN J H, et al.Corrosion Behavior of Ag-Based Alloy in Simulated Body Fluid Solution[J]. Vacuum, 2022, 197: 110850.
[53] 刘睿华. 软钎料在玻璃表面润湿机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 24-29.
LIU R H.Research on Wetting Mechanism of Soft Solder on Glass Surface[J]. Harbin: Harbin Institute of Technology, 2014: 24-29.
[54] 王恩泽, 邢建东, 鲍崇高. 润湿角测定新方法及其应用[J]. 铸造, 2000, 49(S1): 698-699.
WANG E Z, XING J D, BAO C G.The New Method for Determining the Wetting-angle and Its Use[J]. Foundry, 2000, 49(S1): 698-699.
[55] JOUANNY-TRÉSY C, VARDAVOULIAS M, JEANDIN M. Microstructural Evolution during Liquid-Phase Sintering of High-Speed Steel-Based Composites Containing TiN-Coated Al2O3, TiC, or Al2O3 Particles: Influence on Wear Properties[J]. Journal of Materials Science, 1993, 28(22): 6147-6154.
[56] 常青. 碳纳米管辅助C/C复合材料与Nb钎焊工艺及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2022: 103-109.
CHANG Q.Study on Brazing Process and Mechanism of Carbon Nanotubes Assisted C/C Composites and Nb[D]. Harbin: Harbin Institute of Technology, 2022: 103-109.
[57] LIN J H, BA J, CAI Y F, et al.Brazing SiO2f/SiO2 with TC4 Alloy with the Help of Coating Graphene[J]. Vacuum, 2017, 145: 241-244.
[58] SUN Z, ZHANG L X, QI J L, et al.Brazing of SiO2f/SiO2 Composite Modified with Few-Layer Graphene and Invar Using AgCuTi Alloy[J]. Materials & Design, 2015, 88: 51-57.
[59] ZHANG S Y, ZHAO Y W, XU R, et al.Enhancing Sapphire/Kovar Alloy Brazed Joint through Combined Effect of TiB Whisker Reinforcement and Surface Micro-Nano Structures[J]. Materials Characterization, 2024, 217: 114439.
[60] LIN J H, BA J, LIU Y L, et al.Interfacial Microstructure and Improved Wetting Mechanism of SiO2f/SiO2 Brazed with Nb by Plasma Treatment[J]. Vacuum, 2017, 143: 320-328.
[61] 王星星, 彭进, 崔大田, 等. 不锈钢表面电镀锡银钎料的润湿特性[J]. 材料导报, 2018, 32(8): 1263-1266.
WANG X X, PENG J, CUI D T, et al.Wetting Characteristics of Tin-Electroplated Silver Brazing Alloys on the Surface of 304 Stainless Steel[J]. Materials Review, 2018, 32(8): 1263-1266.
[62] 王星星, 龙伟民, 马佳, 等. 锡镀层对BAg50CuZn钎料性能的影响[J]. 焊接学报, 2014, 35(9): 61-64.
WANG X X, LONG W M, MA J, et al.Effect of Electroplated Tin Coating on Properties of BAg50CuZn Brazing Filler Metal[J]. Transactions of the China Welding Institution, 2014, 35(9): 61-64.
[63] 韩晓辉, 张志毅, 邓建峰, 等. Ni含量对304/Sn-8Sb-4Cu-xNi/304钎焊接头组织与剪切性能的影响[J]. 焊接学报, 2023, 44(2): 117-122.
HAN X H, ZHANG Z Y, DENG J F, et al.Effect of Ni Content on Microstructure and Shearing Property of 304/Sn-8Sb-4Cu-xNi/304 Solder Joints[J]. Transactions of the China Welding Institution, 2023, 44(2): 117-122.
[64] IKESHOJI T T.Brazing of Carbon-Carbon (C/C) Composites to Metals[M]. Amsterdam: Elsevier, 2013: 394-420.
[65] 李红, 陶博浩, 栗卓新, 等. 超声振动与激光加热耦合条件下Al基钎料在TiNi形状记忆合金表面润湿铺展行为[J]. 材料工程, 2016, 44(3): 66-71.
LI H, TAO B H, LI Z X, et al.Spreading and Wetting Behavior of Al-Based Brazing Filler Metal on TiNi Shape Memory Alloy Substrate by Coupled Effect of Ultrasonic Vibration and Laser Heating[J]. Journal of Materials Engineering, 2016, 44(3): 66-71.
[66] LI Y X, ZHENG X B, ZHAO C Z, et al.In-Situ Si Particle-Reinforced Joints of Hypereutectic Al-60Si Alloys by Ultrasonic-Assisted Soldering[J]. Transactions of Nonferrous Metals Society of China, 2025, 35(1): 77-90.
[67] LIU S X, LIU M M, LIU T H, et al.Influence of Brazing Atmosphere on the Characteristics, Mechanical and Thermal Stress Damage Properties of Diamond Interface by Molten Ni-Cr Filler Alloy[J]. Vacuum, 2023, 216: 112456.
[68] 张辰, 包崇玺. 钎焊材料预处理及烧结气氛对铁基粉末冶金零件烧结钎焊的影响[J]. 粉末冶金技术, 2024, 42(5): 540-544.
ZHANG C, BAO C X.Effect of Brazing Material Pretreatment and Sintering Atmosphere on Sinter-Brazing of Iron Based Powder Metallurgy Parts[J]. Powder Metallurgy Technology, 2024, 42(5): 540-544.

基金

国家重点研发计划(2024YFB3714100); 陕西省自然科学基础研究计划青年项目(2025JC-YBQN-668); 中国石油集团基础性前瞻性科技专项(2023ZZ11)

PDF(4146 KB)

Accesses

Citation

Detail

段落导航
相关文章

/