Zr和Cu元素对钎焊TC4蜂窝微观组织与力学性能的影响

郭琛骏, 孙逸翔, 裴夤崟, 秦建, 李文彬, 马运五

精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 26-35.

PDF(5439 KB)
PDF(5439 KB)
精密成形工程 ›› 2025, Vol. 17 ›› Issue (6) : 26-35. DOI: 10.3969/j.issn.1674-6457.2025.06.003
精密钎焊

Zr和Cu元素对钎焊TC4蜂窝微观组织与力学性能的影响

  • 郭琛骏1, 孙逸翔1*, 裴夤崟1, 秦建1, 李文彬1, 马运五2
作者信息 +

Effect of Zr and Cu Elements on the Microstructure and Mechanical Properties of Brazed TC4 Honeycombs

  • GUO Chenjun1, SUN Yixiang1*, PEI Yinyin1, QIN Jian1, LI Wenbin1, MA Yunwu2
Author information +
文章历史 +

摘要

目的 研究Cu、Zr含量对Ti-Zr-Cu-Ni钎料钎焊TC4蜂窝组织及性能的影响。方法 通过SEM、XRD和力学试验机等表征手段,发现钎焊接头主要由α-Ti+β-Ti及(Ti,Zr)2(Cu,Ni)等金属间化合物(IMCs)组成。随着Cu、Zr含量的增加,钎料对母材的溶蚀加剧,其中高Cu钎料容易在母材与钎缝区域的连接表面发生偏析产生Ti2Cu等金属间化合物,而高Zr钎料则易在整个钎缝及钎角区域产生Zr2Ni, Zr2Cu等IMCs,从而影响接头的力学性能。结果 Zr比Cu更易扩散至母材形成IMCs,通过调控Cu、Zr含量,可优化IMCs的形成,从而提升接头力学性能。力学测试结果显示,富Cu钎料的最大拉脱强度为22.0 MPa,富Zr钎料的最大抗剪切强度为6.9 MPa。结论 富Cu钎料易生成Ti2Cu,富Zr钎料易生成Zr2Ni、Zr2Cu等金属间化合物。这些金属间化合物降低了焊后残余应力并阻碍了裂纹扩展,从而提高了钎焊接头的力学性能。

Abstract

The work aims to study the effect of Cu and Zr contents on the microstructure and properties of TC4 honeycombs brazed by Ti-Zr-Cu-Ni brazing filler metal. Through characterization techniques such as SEM, XRD, and mechanical testing, it was found that the brazed joints primarily consisted of α-Ti + β-Ti and intermetallic compounds (IMCs) such as (Ti,Zr)2(Cu,Ni). With the increase in Cu and Zr contents, the erosion of the base material by the filler metal intensified. High-Cu filler metals tended to segregate and form IMCs such as Ti2Cu at the interface between the base material and the brazing seam, while high-Zr filler metals were prone to forming IMCs such as Zr2Ni and Zr2Cu throughout the brazing seam and fillet regions, thereby affecting the mechanical properties of the joints. Zr diffused more readily into the base material than Cu, forming IMCs. By adjusting the Cu and Zr contents, the formation of IMCs could be optimized, thereby enhancing the mechanical properties of the joints. Mechanical testing results showed that the maximum pull-off strength of Cu-rich filler metals was 22.0 MPa, while the maximum shear strength of Zr-rich filler metals was 6.9 MPa. This is attributed to the tendency of Cu-rich filler metals to form Ti2Cu and Zr-rich filler metals to form Zr2Ni and Zr2Cu. These IMCs alleviate post-welding residual stress and hinder crack propagation, thereby improving the mechanical properties of the brazed joints.

关键词

Ti6Al4V合金 / 钎焊 / 蜂窝结构 / 微观组织演变 / 力学性能

Key words

Ti6Al4V alloy / brazing / honeycomb structure / microstructure evolution / mechanical properties

引用本文

导出引用
郭琛骏, 孙逸翔, 裴夤崟, 秦建, 李文彬, 马运五. Zr和Cu元素对钎焊TC4蜂窝微观组织与力学性能的影响[J]. 精密成形工程. 2025, 17(6): 26-35 https://doi.org/10.3969/j.issn.1674-6457.2025.06.003
GUO Chenjun, SUN Yixiang, PEI Yinyin, QIN Jian, LI Wenbin, MA Yunwu. Effect of Zr and Cu Elements on the Microstructure and Mechanical Properties of Brazed TC4 Honeycombs[J]. Journal of Netshape Forming Engineering. 2025, 17(6): 26-35 https://doi.org/10.3969/j.issn.1674-6457.2025.06.003
中图分类号: TG425   

参考文献

[1] MOHAMMADI H, AHMAD Z, PETRŮ M, et al.An Insight from Nature: Honeycomb Pattern in Advanced Structural Design for Impact Energy Absorption[J]. Journal of Materials Research and Technology, 2023, 22: 2862-2887.
[2] WU C H, WANG H R, LIU A L, et al.Failure Analysis of Titanium Honeycomb Sandwich Structures Subjected to Three-Point Bending in High-Temperature Condition[J]. Engineering Failure Analysis, 2024, 165: 108735.
[3] WOODWARD J R.Titanium Honeycomb Sandwich Fabrication Process[J]. Materials and processes for the 70’s-Cost Effectiveness and Reliability, 1973: 432-437.
[4] HUANG X, RICHARDS N L.Activated Diffusion Brazing Technology for Manufacture of Titanium Honeycomb Structures-a Statistical Study[J]. Welding Journal, 2004, 83(3): 73
[5] 田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020, 49(8): 17-20.
TIAN Y W, ZHU L L, LI W D, et al.Application and Development of High Temperature Titanium Alloys[J]. Hot Working Technology, 2020, 49(8): 17-20.
[6] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.
LIU S F, SONG X, XUE T, et al.Application and Development of Titanium Alloy and Titanium Matrix Composites in Aerospace Field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.
[7] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4.
LIU Q M, ZHANG Z H, LIU S F, et al.Application and Development of Titanium Alloy in Aerospace and Military Hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4.
[8] 方新文, 管佳佳. TC4钛合金在准静态拉伸下的本构模型及失效参数[J]. 机械强度, 2022, 44(4): 831-836.
FANG X W, GUAN J J.The Constitutive Model and Failure Parameters of TC4 Titanium Alloy under Quasi-static Tension[J]. Journal of Mechanical Strength, 2022, 44(4): 831-836.
[9] LONG W M, LI S N, DU D, et al.Morphological Evolution and Development Trend of Brazing Materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781-3790.
[10] 张海英, 李刚, 臧伟锋, 等. 激光选区熔化Ti-6Al-4V钛合金疲劳裂纹扩展性能研究[J]. 机械强度, 2023, 45(6): 1355-1360
ZHANG H Y, LI G, ZANG W F, et al.Study on Fatigue Crack Propagation Performance of Ti-6Al-4V Titanium Alloy by Laser Selective Melting[J]. Journal of Mechanical Strength, 2023, 45(6): 1355-1360
[11] 龙伟民, 刘大双, 张冠星, 等. 感应钎涂粉末熔融及传热机制[J]. 焊接学报, 2021, 42(11): 29-34.
LONG W M, LIU D S, ZHANG G X, et al.Melting and Heat Transfer Mechanism of Powder by Induction Brazing Coating[J]. Transactions of the China Welding Institution, 2021, 42(11): 29-34.
[12] 龙伟民, 乔培新, 王海滨, 等. 粉末合成钎料的探讨[J]. 机械工程学报, 2001, 37(10): 107-108.
LONG W M, QIAO P X, WANG H B, et al.Discussion of Powder Synthetic Filler Materials[J]. Chinese Journal of Mechanical Engineering, 2001, 37(10): 107-108.
[13] LONG W M.Highly Reliable Joints Between Dissimilar Materials[J]. Journal of Iron and Steel Research International, 2024, 31: 2327-2328
[14] 龙伟民, 赵月, 钟素娟, 等. 铜/铝异质钎焊连接界面金属间化合物的研究进展[J]. 稀有金属材料与工程, 2021, 50(1): 7-13.
LONG W M, ZHAO Y, ZHONG S J, et al.Research Progress on Intermetallic Compounds in Cop-Per-Aluminum Brazed Joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7-13.
[15] LU Q B, LONG W M, ZHONG S J, et al.TZM/graphite Interface Behavior in High-temperature Brazing by Ti-based Brazing Filler Materials[J]. Welding in the World, 2020, 64: 1877-1885
[16] 秦建, 吕贤明, 司浩, 等. 基于智能制造的焊接材料新特征[J]. 材料导报, 2023, 37(11): 128-134.
QIN J, LYU X M, SI H, et al.New Characteristics of Welding Materials during Intelligent Manufacturing[J]. Materials Reports, 2023, 37(11): 128-134.
[17] QIN J, YANG J, LIU P, et al.Microstructure and Properties of Induction Brazing Nickel Base/WC Composite Coating[J]. China Welding, 2023, 32(1): 27-34.
[18] LI Z L, SHI H C, ZHANG P L, et al.Progress, Applications, and Perspectives of Titanium-Based Braze Filler Metal: A Review[J]. Journal of Materials Science, 2023, 58(38): 14945-14996.
[19] 杨浩哲, 裴夤崟, 秦建, 等. TiZrCuNi粉状钎料真空钎焊TA2纯钛接头界面组织及力学性能[J]. 电焊机, 2022, 52(6): 112-117.
YANG H Z, PEI Y Y, QIN J, et al.Microstructure and Mechanical Properties of Pure Titanium TA2 Vacuum Brazing Joint with TiZrCuNi Powder Brazing Filler Metal[J]. Electric Welding Machine, 2022, 52(6): 112-117.
[20] 裴夤崟, 杨浩哲, 秦建, 等. 钛及钛合金钎焊研究进展[J]. 电焊机, 2022, 52(6): 35-45.
PEI Y Y, YANG H Z, QIN J, et al.Research Progress in Brazing of Titanium and Titanium Alloys[J]. Electric Welding Machine, 2022, 52(6): 35-45.
[21] WANG P, SHAO H, CHEN H Y, et al.Enhancement of Mechanical Properties in Ti2AlNb/Ti60 Brazed Joints via Nb Foam-Induced In-Situ Formation of Tough Ti4Nb Phase[J]. Materials Characterization, 2024, 218: 114513.
[22] YUAN L, XIONG J T, DU Y J, et al.Effects of Pure Ti or Zr Powder on Microstructure and Mechanical Properties of Ti6Al4V and Ti2AlNb Joints Brazed with TiZrCuNi[J]. Materials Science and Engineering: A, 2020, 788: 139602.
[23] CHANG C T, WU Z Y, SHIUE R K, et al.Infrared Brazing Ti-6Al-4V and SP-700 Alloys Using the Ti-20Zr-20Cu-20Ni Braze Alloy[J]. Materials Letters, 2007, 61(3): 842-845.
[24] DU Y J, ZHANG J R, LI J L, et al.Microstructure Evolution and Mechanical Properties of Ti2AlNb/TC17 Joints Brazed with Ti-Zr-Cu-Ni Filler Metal[J]. Vacuum, 2023, 215: 112365.
[25] REN H S, SHANG Y L, REN X Y, et al.Microstructure and Mechanical Properties of TiAl/TiAl Joints Brazed with a Newly Developed Ti-Ni-Nb-Zr Quaternary Filler Alloy[J]. Progress in Natural Science: Materials International, 2022, 32(6): 758-768.
[26] SUN Z, ZHANG B Y, LI D G, et al.Brazing of TC4 Alloy Using Ti-Zr-Ni-Cu-Sn Amorphous Braze Fillers[J]. Materials, 2024, 17(15): 3745.
[27] BAI X Y, LIU M Q, PANG S J, et al.Novel Ti-Zr-Co- Cu-M (M=Sn, V, Al) Amorphous/Nanocrystalline Brazing Fillers for Joining Ti-6Al-4V Alloy[J]. Materials Characterization, 2023, 196: 112607.
[28] LI L, CHEN Y T, YUAN L X, et al.Effect of Brazing Temperature on Microstructure and Tensile Strength of γ-TiAl Joint Vacuum Brazed with Micro-Nano Ti-Cu- Ni-Nb-Al-Hf Filler[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(8): 2563-2574.
[29] Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions: ASTM C297-94(1999)[S]. ASTM International, 1999.
[30] 全国轻金属标准化技术委员会. GB/T 25917.3—2010夹层结构及其相关材料的试验方法第3部分: 短梁剪切法测定夹层结构的面内剪切性能[S]. 北京: 中国标准出版社, 2010.
National Technical Committee for Light Metals Standardization. GB/T 25917.3—2010: Test Method for In-plane Shear Properties of Sandwich Constructions by Short-beam Method[S]. Beijing: Standards Press of China, 2010.
[31] WU B S, DONG H G, LI P, et al.Vacuum Diffusion Bonding of TC4 Titanium Alloy and T2 Copper by a Slow Cooling Heat Treatment[J]. Journal of Materials Processing Technology, 2022, 305: 117595.
[32] LING L J, TENG J F, CHEN M A. Microstructure Evolution, Diffusion Behavior and Fatigue Properties of TC4 Titanium Alloy Joints Brazed with Ti-Zr-Based Filler[J]. Welding in the World, 2022, 66(12): 2625-2638.
[33] JING Y J, YUE X S, GAO X Q, et al.The Influence of Zr Content on the Performance of TiZrCuNi Brazing Filler[J]. Materials Science and Engineering: A, 2016, 678: 190-196.
[34] OKAMOTO H, SCHLESINGER M E, MUELLER E M.Binary Alloy Phase Diagrams[M]. Almele: ASM International, 2016.
[35] KUMAR B, DWIBEDI S, BAG S.On the Interaction of Cooling Rate with Thermal-Microstructural-Mechanical Characteristics of Laser-Welded α+β Titanium Alloy[J]. Advances in Materials and Processing Technologies, 2022, 8(2): 774-789.
[36] ZOU Z H, ZENG F H, WU H B, et al.The Joint Strength and Fracture Mechanisms of TC4/TC4 and TA0/TA0 Brazed with Ti-25Cu-15Ni Braze Alloy[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2079-2085.
[37] ZHANG L J, CHEN Z Y, HU Q M, et al.On the Abnormal Fast Diffusion of Solute Atoms in Α-Ti: A First-Principles Investigation[J]. Journal of Alloys and Compounds, 2018, 740: 156-166.
[38] GIESSEN B C, SZYMANSKI D.A Metastable Phase TiCu3(m)[J]. Journal of Applied Crystallography, 1971, 4(3): 257-259.
[39] LIANG M.Effect of Brazing Clearance on the Microstructure and Mechanical Properties of TC4/TC4 Joints Brazed in Vacuum with Ti-Zr-Ni Filler Metal[J]. Journal of Materials Engineering and Performance, 2023, 32: 2973-2982.

基金

国家重点研发计划(2022YFB3402203); 河南省重点研发项目(221111520100,241111233300)

PDF(5439 KB)

Accesses

Citation

Detail

段落导航
相关文章

/