文章摘要
张子琪,周祥曼,郑事成,等.基于神经网络的电弧增材制造铝合金力学性能预测[J].精密成形工程,2024,16(1):43-51.
ZHANG Ziqi,ZHOU Xiangman,ZHENG Shicheng,et al.Neural Network-based Prediction of Mechanical Properties of Wire Arc Additively Manufactured Aluminum Alloys[J].Journal of Netshape Forming Engineering,2024,16(1):43-51.
基于神经网络的电弧增材制造铝合金力学性能预测
Neural Network-based Prediction of Mechanical Properties of Wire Arc Additively Manufactured Aluminum Alloys
投稿时间:2023-10-10  
DOI:10.3969/j.issn.1674-6457.2024.01.005
中文关键词: 6061铝合金  TiC增强的6061铝合金  BP神经网络  粒子群算法  遗传算法  力学性能
英文关键词: 6061 aluminum alloy  TiC-reinforced 6061 aluminum alloy  BP neural network  particle swarm algorithm  genetic algorithm  mechanical properties
基金项目:国家自然科学基金(51705287);湖北省教育厅科研计划(D20211203)
作者单位
张子琪 三峡大学 机械与动力学院湖北 宜昌 443002 
周祥曼 三峡大学 机械与动力学院湖北 宜昌 443002
三峡大学 水电机械设备设计与维护湖北省重点实验室湖北 宜昌 443002 
郑事成 三峡大学 机械与动力学院湖北 宜昌 443002 
李波 三峡大学 机械与动力学院湖北 宜昌 443002 
李立军 三峡大学 机械与动力学院湖北 宜昌 443002 
付君健 三峡大学 机械与动力学院湖北 宜昌 443002
三峡大学 水电机械设备设计与维护湖北省重点实验室湖北 宜昌 443002 
摘要点击次数: 1500
全文下载次数: 661
中文摘要:
      目的 预测不同工艺参数下电弧增材制造铝合金的力学性能。方法 通过实验建立了电弧增材制造6061铝合金及TiC增强6061铝合金力学性能的数据集,并建立了一种以焊接电流、焊接速度、脉冲频率、TiC颗粒含量为输入,以屈服强度和抗拉强度为输出的神经网预测模型,对比了反向传播神经网络(BP)、粒子群算法优化BP神经网络(PSO-BP)、遗传算法优化BP神经网络(GA-BP)3种预测模型的精度。结果 与BP模型和PSO-BP模型相比,GA-BP预测模型具有更好的预测精度。其中,GA-BP模型预测6061铝合金屈服强度最佳结果的相关系数(R)为0.965,决定系数(R2)为0.93,平均绝对误差(Mean Absolute Error,MAE)为2.35,均方根误差(Root Mean Square Error,RMSE)为2.67;预测TiC增强的6061铝合金抗拉强度最佳结果的R=1,R2高达0.99,MAE为0.46,RMSE为0.49,GA-BP具有良好的预测精度。结论 BP、PSO-BP、GA-BP 3种神经网络模型可以用来预测电弧增材制造铝合金的力学性能,GA-BP模型比其他2种模型的预测精度更优。与传统的实验方法相比,用神经网络模型预测电弧增材制造铝合金力学性能的速度更快,成本更低。
英文摘要:
      The work aims to predict the mechanical properties of aluminum alloy produced by wire arc additive manufacturing under different process parameters. In this paper, a data set of mechanical properties of wire arc additively manufactured 6061 aluminum alloy and TiC-reinforced 6061 aluminum alloy was experimentally established. A neural network prediction model was established with welding current, welding speed, pulse frequency, and TiC particle content as inputs, and yield strength and tensile strength as outputs. The accuracy of three prediction models:backpropagation neural network (BP), particle swarm optimization BP neural network (PSO-BP), and genetic algorithm optimization BP neural network (GA-BP) were compared. The results indicated that the GA-BP prediction model had better prediction accuracy than the BP model and the PSO-BP model. Among them, the optimal relationship number R for predicting the yield strength of 6061 aluminum alloy using the GA-BP model was 0.965, with a determination coefficient R2 of 0.93, mean absolute error (MAE) of 2.35, and root mean square error (RMSE) of 2.67; The best result for predicting the tensile strength of TiC reinforced 6061 aluminum alloy was R=1, with R2 as high as 0.99, MAE as 0.46, and RMSE as 0.49. GA-BP had good prediction accuracy. In conclusion, BP, PSO-BP, and GA-BP neural network models can predict the mechanical properties of aluminum alloy produced by wire arc additive manufacturing, and the GA-BP model has better prediction accuracy than the other two. Compared to traditional experimental methods, the method of using neural network models to predict the mechanical properties of wire arc additive manufacturing aluminum alloys is faster and less costly
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第14862384位访问者    渝ICP备15012534号-4

>版权所有:《精密成形工程》编辑部 2014 All Rights Reserved

>邮编:400039 电话:023-68679125传真:02368792396 Email: jmcxgc@163.com

    

渝公网安备 50010702501719号