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ABSTRACT: The work aims to study the microstructure evolution of GH4698 that is deformed at 1100 ‘C with 0.12 mm/s re-
duction rate to the height reduction of 40% and is treated by water quenching at 1120 °C for 8 h. The isothermal constant strain
rate compression experiment was carried out by Thermecmastor-z thermal simulation testing machine, and then the heat treat-
ment experiment was completed in the heat treatment furnace. The microstructure evolution law of GH4698 after hot deforma-
tion and solution treatment was analyzed by using Large Area Montages (LAM) global characterization technology. In the re-
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gion where the strain was less than the critical strain of dynamic recrystallization (¢=0.165), the average grain size was 63 um
when the maximum grain size was 439 pm, which meant that the maximum grain size was more than five times as much as the
average grain size and the grain size distribution was not uniform after solution treatment. The percentage of dynamic recrystal-
lization increased with the increase of strain (¢>0.165) and the average grain size decreased after solution treatment. The distri-
bution of twins after hot deformation was closely related to the strain, which was 40.7% in the small strain region, 10.6% in the
medium strain region and 28.9% in the large strain region. The characteristics of grain size distribution after solution are closely
related to the percentage of dynamic recrystallization after hot deformation. Due to the uneven distribution of the stored energy
of hot deformation, the grain boundary migration rate is larger after solution treatment, the grain size in the critical strain region
(6=0.165) is distributed unevenly. In the region where the strain is less than the critical strain after solution treatment (<0.165),
static recrystallization mainly occursto refine the grains; with the increase of dynamic recrystallization percentage, the grain size
decreases with the increase of strain (¢>0.165). In addition, there is also a certain correlation between the distribution of twins
and the dynamic recrystallization.
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Fig.2 Microstructures corresponding to different strains after hot compression
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5a



2021 1

92
6 7b
o SRR
2a  2b

g

v

&

o

£=0.165 e=0.571 GOS
7
0.016 0.043 0.077 0.165 0.363 0.571 0.966 1.253
7a BAE
[17]
6
Fig.6 Histogram of grain size distribution after
solution heat treatment
a P,e=0.165 b P, e=0.571
7 GOS
Fig.7 Grain orientation spread (GOS) figure with different strains
= , B 8a
23 MABTESESNTEXR P P
3 6
LAM GH4698 Pg
8 40.7% 10.6% 28.9%
15°
2°~15°
f=15°y 2 CSL [19-20]
EBSD 3 [
8a

[21-22)

8b

8a

[23-24]



13 1

LAM

GH4698 93

a PSR

8

b FEF S

Fig.8 Grain boundary distribution maps of the cross axis section after hot compression and solution heat treatment
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