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ABSTRACT: A hybrid global optimization method combining the Real - coded genetic algorithm and
some classical local optimization methods is constructed and applied to develop a special program for pa鄄
rameter identification. The parameter identification for magnesium alloy AZ31D is carried out by using
the program. A comparison of deformation test and numerical simulation shows that the parameter identi鄄
fication and the obtained material parameters are all available. The obtained constitutive parameters can
be used for numerical simulation of hot plastic forming of the magnesium alloy parts.
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1摇 Introduction

The magnesium alloy is a structure material which is
applied widely for different mechanical sand electrical
productions because of its higher ration of strength and
density. The hot plastic forming is very important tech鄄
nology for manufacturing magnesium parts, therefore
the research on numerical simulation of hot plastic
forming process and prediction of the microstructure e鄄
volution have important significance to improve the per鄄
formance of magnesium alloy products. A lot of numer鄄
ical simulation results show that the constitutive rela鄄
tion and the constitutive parameters, which used for

numerical calculation, have significant influence on the
simulated results, specially the predicted microstruc鄄
ture results. Traditional method of measuring the mate鄄
rial parameters is compression test and metallurgical
observation of the deformed specimen and the data
treatment by the volume average or area average meth鄄
od. However the treated data is not proper for numeri鄄
cal simulation of microstructure evolution because the
specimen size is much larger than the grain size. For
this reason, the parameter identification for magnesium
alloy is the emphasis in this paper.
In order to realize prediction of microstructure during
hot working, a thermal visco-plastic model considering
dynamic recrystallization (VPDR) is developed firstly
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by Jin[1] and then improved by Qu et al recently[2] .
The constitutive model includes more material parame鄄
ters. It is very difficult to measure these parameters ac鄄
curately by means of the existing conventional testing
method because of complexity of the hot forging
process. The inverse analysis technique may be a way
to solve the problem. Its principle is to optimize the
material parameters for minimizing a particular norm of
the difference between the calculated values and the
experimental results.
As well know the classical local optimization methods
based on local differential[3—4] may be failing for the
complex problem with non-convex objective function,
so the global optimization algorithm has to be devel鄄
oped. The global algorithm includes both determinate
approach and stochastic approach. The existing deter鄄
minate algorithms use some mathematic characters of
objective function, so its application is limited. The
stochastic approach is a global search method. Most of
them are based on evolutionary strategies mainly, such
as the shuffled complex evolution method [5], the real-
coded genetic algorithm[6] . Considering slower conver鄄
gence of the stochastic algorithm, most researchers
think that only hybrid algorithms can lead to really in鄄
teresting performance.
A hybrid evolutionary method is constructed to identify
the parameters of VPDR in this paper. The algorithm
includes the genetic algorithm with multiple crossover
operators and L-M algorithm. A special numerical pro鄄
gram for parameter identification of VPDR has been
made through combination of above hybrid algorithm and
a 2D program for simulating hot forging processing.
A set of satisfactory material parameters for AZ31D
magnesium alloy is obtained respectively by the pro鄄
posed inverse analysis numerical procedure. The set
material parameters is validated through back extrusion
experiment of a magnesium alloy AZ31D part and its
numerical simulation. In any case, the parameter iden鄄
tification for macro-micro coupled hot plastic constitu鄄
tive relation is very complex and difficult project [11—12],
where are many problems on theory and algorithm to be
studied.

2摇 Thermal visco-plastic model

The VPDR is developed firstly by Jin [1], and im鄄
proved by Qu and et al. [2] recently. This model em鄄
phasizes dynamic recrystalllization evolution and its
coupling with macroscopic deformation through dividing
the recrystallized region and un-recrystallized region.
In the model the microstructure evolution is described
by the volume fraction of recrystallization X, un - re鄄
crystallized grain size D1, recrystallized grain size D2,
the average grain size D and the maximum difference of
grain size Ddis, where the subscript 1 and 2 denotes the
variable in the unrecrystallized region and in the re鄄
crystallized region, respectively. In the model there
are 19 material parameters to be identified: A1, A2,
C1, C2, P1, P2, Q, n, M0, QM, a酌0, F10, F20, QF,
li / ld, C, P,茁0, Q茁 .

3摇 Objective function

Objective function. Set the parameter vector K, upper
limit vector U and lower limit vector L.
KT ={A1, A2, C1, C2, P1, P2, Q, n, M0, QM, a酌0,
F10, F20, QF, li / ld, C, P,茁0, Q茁}, L臆K i臆Ui (1)
The objective function can be expressed as :

准(K) = 1
2 移

4

i = 1
棕 i ri 2

2 = 1
2 R(K) TR(k), r1 =

F - F*, r2 = D - D*, r3 = X - X*, r4 = Ddis - D*
dis

(2)
Where 棕i ( i = 1,2,3,4) are the weights of residual
vector ri( i=1,2,3,4). In above equations, F* repre鄄
sents measured loads at different time points, X*,
D*, D*

dis represent the measured values of the recrys鄄
tallized volume fractions, the average grain sizes and
the maximum grain size differences. F, X, D, Dids are
the related calculated values. Let 棕1 = 1 and 棕2, 棕3,
棕4 can be determined by the relative magnitude of
ri( i=1,2,3,4).
Calculation of objective function. The experimental
results in this paper are from the compression test of
cylindrical specimen under constant temperature and
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constant velocity[7] . The experimental results include
the load - displacement curve, distribution of average
grain size, volume fraction of dynamic recrystalliza鄄
tion, and maximum difference of grain size. The relat鄄
ed calculated results are from numerical simulation of
the upsetting test by using a special version of 2D rigid
-plastic finite element program with the VPDR model.
Characteristics of objective function. A lot of nu鄄
merical calculation show that the objective function has
the following characteristics: (1) The objective func鄄
tion is non-convex. (2) The parameter space for nu鄄
merically feasible solution is not clear. (3) Huge com鄄
pute resource may be need for calculating the objective
function. (4) The parameter sensitivity of the objec鄄
tive function is poor.

4摇 Global optimization agorithm

Considering above characters of the objective function,
a hybrid evolutionary method ( HEM) is designed.
This is a global optimization strategy, which is a com鄄
bination of the genetic algorithm (GA) [6], Levenberg-
Marquardt ( L -M) algorithm[3], augmented Gauss -
Newton (NL2SNO) algorithm[4] with the flexible toler鄄
ance method[8] and the concept of complex[9] . Be鄄
cause of its global search ability and slower conver鄄
gence, GA in HEM is only for finding a good initial
value of the solution, and then using L-M algorithm
and NL2SNO refine gradually the obtained the solu鄄
tion. When the solution obtained by L -M algorithm
and NL2SNO algorithm is numerically infeasible, the
flexible tolerance method is used in order to find a nu鄄
merically feasible solution to replace the numerically
infeasible solution. The solution obtained by NL2SNO
algorithm as a child of GA population turn to GA until
the stop criterion is reached.
Real-coded genetic algorithm (RGA) . As a global
optimization technique, RGA includes production oper鄄
ator, crossover operator and mutation operator. Here a
real number vector (parameter vector) is regarded as a
representation of problem.
Generation of initial population. Considering varia鄄

tion interval of some parameters may be very large the
method of population initialization is as follows.

K i =
10 lg Li+啄(lg Ui-lg Li) 摇 Ui / Li逸100
Li+啄(Ui-Li)摇 摇 Ui / Li臆

{ 100
(3)

Mutation operator. No - uniform mutation operator
(Herrera et al. , 1998) is a successful mutation opera鄄
tor, which makes a uniform search in the population at
initial stage and very locally at a later stage. However
the value from operator is biased towards the points
with larger absolute value. In order to make the muta鄄
tion operator search parameter space thoroughly as pos鄄
sible, the following hybrid no-uniform mutation opera鄄
tor is proposed.

lg(K i / K0i)=
茁 lg (Ui / K0i)摇 Ui / Li逸100,啄逸0. 5
茁 lg (Li / K0i), Ui / Li逸100,啄<0.{ 5

(4)

K i =
K0i+茁(Ui-K0i)摇 Ui / Li<100, 啄逸0. 5
K0i+茁(K0i-Li)摇 Ui / Li<100, 啄<0.{ 5

lg(1-茁)= (1-t / gmax) 5 lg 琢
In above equations, K0i is the gene of parent, t and
gmax is the current generation number and set maximum
generation number respectively.
Crossover operator. The crossover operator is the
core of genetic algorithm. The above method used for
the initial population and the mutation operator is also
applied to the crossover operator.
Considering advantages of different crossover operators,
a hybrid crossover operator is designed. The hybrid
crossover operator combines SBX crossover operator,
Random simplex crossover operator, FCB crossover op鄄
erator, arithmetical crossover operator with one dimen鄄
sional golden section local search algorithm. By using
the concept of complex shuffling, several parents are
selected from population P as a complex A, and then
the crossover operator and mutation operator are ap鄄
plied in a complex; the generated children from A are
shuffled in P at last.
Generation-alteration model (GAM) . GAM deter鄄
mines how to choose pairs of parents for generating
children by the crossover operators and the mutation
operators and how to select parents surviving in the
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next generation. Here GAM role is to search thoroughly
parameter space, because GA is used only for finding a
good initial solution of classic optimization method. Af鄄
ter arraying N chromosomes in order of decreasing ob鄄
jective function, the selection probability of chromo鄄
some i is as:
籽i = i / [(N+1)N]摇 ( i=1,…,N) (5)
After this, the parents used for mutation and crossover
are selected according to Roulette rule.
Classic optimization method. Classic local optimiza鄄
tion method is based on the following quadratic Taylor
expansion of objective function 准(K) at Kt .

准(K)= 准(Kt)+RT
t Jt驻K+ 1

2 驻KTHt驻K (6)

Where Rt =R(Kt), Jt =塄Rt, H = JT
t J+Rt塄2Rt . The

Only JT
t Jt is considered in L -M algorithm based on

Gauss-Newton model qG
t (K t+1 ) and the trust region

technology. However, the error due to ignoring
Rt塄2Rt may be larger because of nonlinear interaction
among parameters and large residuals Rt . NL2SNO
based on augmented Gauss-Newton model qs

t(Kt+1) is
just for dealing with the case because of including
Rt塄2Rt . On other hand, more tests show that predic鄄
ted 准(Kt+1) by qG

i (Kt+1) is often better than that by qs
t

(Kt+1) for small time steps. For this reason, the L-M
algorithm is first is started up to refine the initial solu鄄
tion from GA until 驻K t is enough small. After this,
NL2SNO algorithm runs to make a last few refining it鄄
eration. When some solutions given by L - M and
NL2SNO may be numerically infeasible, the feasible
tolerance method is adopted for producing a numerical鄄
ly feasible solution. The feasible tolerance method is
not only able to avoid that the iteration process is
trapped by minor optimum but also in dependent on de鄄
rivative of objective function.
In L-M algorithm a set of constraints is added into the
objective function by weighted penalty function. Let
denote the solution obtained by L-M algorithm, then

the set of constraints is: if K i < Li then K i = Li, if

Li<K i<Ui, then K i =K i, if K i>Ui, then K i =Ui .
Feasibility enforcement operator (FEO) . A solu鄄

tion is defined as an infeasible solution when the calcu鄄
lation of objective function is interrupted, or the calcu鄄
lated results do not agree obviously with the general
knowledge. In the population initialization phase and
early search phase by crossover operator and mutation
operator, the generated solution may be infeasible with
high probability. A feasibility enforcement operator is
designed to make an infeasible solution feasible as pos鄄
sible. The feasibility enforcement operator means the
prescriptive variation interval of some variables ( such
as flow stress, grain size and etc. ) according to expe鄄
rience and the experimental data.

5摇 Parameter identification for mag鄄
nesium alloy AZ31D

A software for parameter identification is developed by
combination of the global optimization algorithm and
the rigid-plastic FEM program. The parameter identifi鄄
cation of VPDR for AZ31D magnesium alloy is carried
out by using the software.
In order to provide input experimental data for parame鄄
ter identification as initial value of the iteration process,
a set of compression of cylindrical specimen of magne鄄
sium alloy AZ31D is carried out under different tem鄄
perature, different strain rate and different strain. The
distribution and its variation of grain size in the com鄄
pressed specimen with deformation condition are ob鄄
served experimentally. The conferences[7,10] give the
detailed experimental results. The main experimental
data used for parameter identification include the stress
-strain curves obtained for the compression tests, grain
size evolution under different deformation conditions,
the load-displacement curves of the compression tests.
In the parameter identification calculation, the stress-
strain data used to estimate the parameter iteration ini鄄
tial value and selected parameter range, the load data
and grain data are used to objective function calcula鄄
tion for evaluate the difference between the selected pa鄄
rameters and ideal parameters. The important input da鄄
ta for parameter identification of AZ31D is listed in Ta鄄
ble 1, where Li and Ui are the lower limit and upper
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limit of the parameter range respectively. The identi鄄
fied parameters for AZ31D are listed in Table 2.

Table 1 Input dta for prameter ientification of AZ31D
表 1摇 AZ31D 参数识别的输入数据

Parameter Unit Initial value Li Ui

Aun N / mm2 19. 23 10 400
cun 0. 000 479 0. 0001 0. 4
pun 0. 8674 0. 1 0. 8
Are N / mm2 19. 23 10 100
cre 0. 009 31 0. 0001 0. 4
pre 0. 5678 0. 1 0. 8
Q kJ / mol 86 230 50 300
Fun0 mm4 / (N2·s) 28. 53 3伊10-2 3伊104

Fre0 mm4 / (N2·s) 27 3伊10-2 3伊104

QF kJ / mol 114. 64 45 400
a酌0 J / mm2 3. 7伊10-5 9伊10-8 14伊10-4

Li / Ld 3. 003 2 20
M0 mm2 / (J·s) 2. 63伊1011 2伊109 2伊1014

QM kJ / mol 94. 273 50 300
b0 Jmm / N2 0. 014 1. 4伊10-5 140
Qb kJ / mol 73. 775 50 200
n忆 0. 538 0. 2 1
c mm 365. 18 1 1000
p -1. 095 -2. 8 -0. 25

Table 2 Identified parameters for AZ31D
表 2摇 通过参数识别得出的 AZ31D 参数

Parameter Unit Parameter value
Aun N / mm2 24. 11
cun 0. 005
pun 0. 6326
Are N / mm2 24. 11
cre 0. 0096
pre 0. 5746
a酌0 J / mm2 9. 96伊10-5

c Mm 347. 4
p -1. 086
n忆 0. 52

Li / Ld 4. 941
Q J / mol 89 000
Qb J / mol 72 248. 5
M0 mm2 / (J·s) 2. 23伊1011

b0 J·mm / N2 0. 092 41
QF J / mol 129 872
Fun0 mm4 / (N2·s) 33. 32
Fre0 mm4 / (N2·s) 31. 832
QM J / mol 92 130

In order to validate the identified results, a back extru鄄
sion process of an AZ31D part is carried out. The Fig.
1 gives the formed part and the photos of the part pro鄄
file where grain distribution can be measured. The
back extrusion process of an AZ31D part is simulated
numerically by using the obtained material parameters.
A comparison of the calculated results and the experi鄄
mental results on dynamic recrystallization and grain
size evolution are shown in Fig. 1-2 and in Table 3. It
is can be seen that the calculated results agree very
well with the experimental observation.

Fig. 1 Experimental results on microstructure distribution
of formed AZ31D part
图 1摇 成形零件微观组织分布的实验结果

Fig. 2 Simulated results on microstructure distribution of
formed AZ31D part (step 124)
图 2摇 成形零件微观组织分布的数值模拟结果



第 6 卷摇 第 6 期摇 摇 JIN Quan-lin, et al. :Parameter Identification of Thermal Visco-plastic Model for Magnesium Alloy AZ31D摇 摇 45摇摇摇

Table 3 Comparison of simulated and experimental re鄄
sults on microstructure for AZ31D

表 3摇 AZ31D 微观组织的模拟结果与实验结果的对比

Region No. A B C
Recrystallized
grain size D2 / 滋m

Experimental
Simulated

3 ~4
3 ~4

3 ~4
3 ~5

10
2 ~4

Un-recrystallized
grain size D1 / 滋m

Experimental
Simulated

30
16 ~42

50
25 ~55

200
90 ~120

Average grain size
D / 滋m

Experimental
Simulated

5
2 ~6

5
2 ~6

30
14 ~30

Grain size difference
Dis / 滋m

Experimental
Simulated

25
0 ~30

45
0 ~46

110
93

Recrystallized volume
fraction X / %

Experimental
Simulated

100
100

100
100

60
70

6摇 Conclusion

In order to identify the material parameters of VPDR,
an objective function with multiple objects is estab鄄
lished, and a HEM including RG, L-M and NL2SNO,
is constructed. A special program for parameter identi鄄
fication is developed by a combining FEM and HEM.
By using the program, the parameter identification for
AZ31D magnesium alloy is carried out. A comparison
between calculated results and experimental results on
the back extrusion process of an AZ31D part shows that
the parameter identification program and the identified
material parameters are all reliable.
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镁合金 AZ31D 热粘塑性模型的参数识别

金泉林, 张艳姝
(机械科学研究总院 先进制造技术研究中心, 北京 100083)

摘要:通过联合实数编码遗传算法和一些经典的局部优化方法,构造了一种混合型的全局优化方

法并用于开发一个专用的参数识别程序。 使用这个专用程序进行了镁合金 AZ31D 的参数识别。
变形试验和数值模拟结果的比较显示,本参数识别方法及其所得到的材料参数都是可用的。 所得

到的本构参数可用于镁合金零件热塑性成形的数值模拟。
关键词:参数识别; 动态再结晶; 反分析; 镁合金


